
PoLPer: Process-Aware Restriction of Over-Privileged
Setuid Calls in Legacy Applications

Yuseok Jeon

Purdue

Junghwan Rhee

NEC Laboratories America

Chung Hwan Kim

NEC Laboratories America

Zhichun Li

NEC Laboratories America

Mathias Payer

EPFL and Purdue

Byoungyoung Lee

Seoul National and Purdue

Zhenyu Wu

NEC Laboratories America

ABSTRACT
setuid system calls enable critical functions such as user authenti-

cations and modular privileged components. Such operations must

only be executed after careful validation. However, current systems

do not perform rigorous checks, allowing exploitation of privileges

through memory corruption vulnerabilities in privileged programs.

As a solution, understanding which setuid system calls can be

invoked in what context of a process allows precise enforcement

of least privileges. We propose a novel comprehensive method to

systematically extract and enforce least privilege of setuid system
calls to prevent misuse. Our approach learns the required process

contexts of setuid system calls along multiple dimensions: process

hierarchy, call stack, and parameter in a process-aware way. Every

setuid system call is then restricted to the per-process context

by our kernel-level context enforcer. Previous approaches without

process-awareness are too coarse-grained to control setuid sys-

tem calls, resulting in over-privilege. Our method reduces available

privileges even for identical code depending on whether it is run by

a parent or a child process. We present our prototype called PoLPer
which systematically discovers only required setuid system calls

and effectively prevents real-world exploits targeting vulnerabil-

ities of the setuid family of system calls in popular desktop and

server software at near zero overhead.

CCS CONCEPTS
• Security and privacy→ Systems security; Software and ap-
plication security;

KEYWORDS
Setuid system calls, Least Privilege Principle, Process hierarchy

ACM Reference Format:
Yuseok Jeon, Junghwan Rhee, Chung Hwan Kim, Zhichun Li, Mathias

Payer, Byoungyoung Lee, and Zhenyu Wu. 2019. PoLPer: Process-Aware

Restriction of Over-Privileged Setuid Calls in Legacy Applications . In Ninth
ACM Conference on Data and Application Security and Privacy (CODASPY
’19), March 25–27, 2019, Richardson, TX, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3292006.3300028

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CODASPY ’19, March 25–27, 2019, Richardson, TX, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6099-9/19/03. . . $15.00

https://doi.org/10.1145/3292006.3300028

1 INTRODUCTION
The setuid family of system calls

1
is a well-established mechanism

in major operating systems to manage privileges in applications

[11]. The setuid system calls enable critical security functions

such as user authentication and modular privileged components.

The code invoking setuid calls, namely privilege sensitive code,
provides a conceptual security gateway for privileged operations.

However, if privilege sensitive code is misused or fails to perform

rigorous checks, this code can lead to a disastrous system breach

by allowing unintended privileges (e.g., a root shell spawned by

an attacker). As such, privilege sensitive code essentially forms the

foundational principle of least privilege [48].

In an ideal deployment with the principle of least privilege

(PoLP), a certain entity is grantedwith a privilege onlywhen needed,

and de-privileged otherwise. Specifically, the system must be com-

partmentalized so that a privileged operation can only be executed

after careful checking of the context. On one hand, compartmen-

talization [21, 23] reduces the amount of code that may execute

setuid calls. And, on the other hand, it enables a strict interface

on how privileged operations can be reached. For instance, Qmail

[5] uses separate modules under separate user IDs where each ID

has only limited access to a subset of resources. The highest privi-

lege (e.g., root) is contained in a very small restricted module to

prevent its misuse. As another example, secure computing mode

(seccomp) [49] is a security facility in the Linux kernel allowing a

process to make a one-way transition in a secure state; for instance,

a system call is restricted on certain parameters or entirely after a

state transition.

In addition, the principle of least privilege requires different

modules to interact through clearly defined channels. That is, a

module may only request services from other modules using a well-

defined API. If the principle of least privilege is enforced correctly,

vulnerable modules are unprivileged (e.g., rendering engines in a

browser or audio/video decoding modules in media players). Thus,

adversaries must not only hijack the control flow or manipulate the

data flow but also launch confused deputy attacks [22] to circumvent

least privilege. In particular, attackers must launch confused deputy

attacks to confuse the trusted module through the exposed API,

such that their hijacked unprivileged context can be escalated to

a higher privilege context which is suitable to perform malicious

actions.

Although the principle of least privilege raises the security bar

significantly, it is challenging to enforce on legacy applications that

1
The setuid family includes system calls that set user ID (UID) and group ID (GID) in

Unix-like operating systems, such as setuid, seteuid, setgid, and setegid. We also

use setuid calls to refer to these system calls herein.

Session 5: Access Control and Information Flow CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

209

https://doi.org/10.1145/3292006.3300028
https://doi.org/10.1145/3292006.3300028

Figure 1: Automatically extracted multiple process contexts
of setuid calls in sudo and sshd. PoLPer prevents any un-
necessary setuid calls for the parent process while they are
allowed for a child process. PoLPer enforces only required
setuid calls based on process context.

are already deployed widely. Many legacy applications are mono-

lithic and do not follow a modular design. Moreover, many existing

techniques (including compartmentalization and seccomp) require

re-design of software to adopt them, hindering their wide adoption

by legacy software in practice. As a result, legacy applications allow
large parts of the program to run over-privileged (the superset of all
required privileges) instead of separating it into compartments/com-

municating modules with different sets of privileges.

In particular, such modules often run in separate processes but

their least privileges are not properly enforced. For instance, Fig-

ure 1 shows monolithic code examples of setuid system calls

for more than one process. In this example, it is assumed that a

child process is temporarily privileged and then de-privileged us-

ing setuid syscalls while a parent process runs without privilege
changes (which is usually the case in multi-process based service

daemons such as Apache and Nginx web servers). This privilege

switch for a child process is enabled by privilege sensitive code,

which is shown in red color in Figure 1. However, since privilege

sensitive code is shared by the parent and its child process, the same

code can be exploited by the parent process. More specifically, if the

attacker can manipulate the control flow of the parent process, such

privilege sensitive code can be abused to launch privilege escalation

attacks [7, 46]. Hence, many legacy programs using setuid calls
have been an active target by many shell code [16], ROP attacks

[34, 47], and non-control data attacks [24, 27].

In this paper, we propose PoLPer 2 to defend against adversaries

exploiting such an over-privilege. Based on our study (Table 2 in

Section 5.2) many popular programs use setuid system calls with

2PoLPer represents Principle of Least Privilege Enforcer.

distinct patterns in parent or child processes. Therefore, a policy

control in the program level causes over-provision of privileges

in run-time states. This problem is currently not addressed by ex-

isting work to the best of our knowledge, and it poses a high risk

for privilege exploitation. PoLPer provides a novel mechanism to

recognize and apply this process-aware policy to restrict current
over-privileges of legacy software without any change in code with
negligible run-time overhead.

Specifically, our approach systematically extracts and enforces

only required setuid calls following the least privilege principle.
In particular, it analyzes multiple comprehensive contexts of re-

quired setuid calls regarding the type of a process, data values,

and call stack contexts. This is achieved by static program analy-

sis and training of the run-time contexts of setuid calls for each
process. The context details are as follows: Process Hierarchy
Context: In Figure 1, given identical code, different portions of

code are executed at run-time depending on the process’ role inside

a program. The setuid calls marked in red are made by a child

process while the parent process marked in blue does not run this

code, shown as empty sets in the parent process table. Therefore,

the setuid calls invoked by the red code should be restricted to the
child process only. This can only be done by recognizing processes’

hierarchical contexts (i.e., whether it is a parent or a child process).

Our work proposes a new technique to observe this context for mul-

tiple run-time context checks. Process Data and Call Contexts:
Once the process context is recognized, our approach hardens the

execution of setuid system calls by learning and enforcing only

necessary contexts in data parameters and call stack, which are in-

dexed by a process hierarchy meaning that the profiles of contexts

are individualized per process.

Contributions: We present PoLPer with the following contribu-

tions:

• Dividing setuid execution profiles of a program with pro-
cess hierarchy context:Multiple processes and threads share

the same code for execution. However, processes may have dif-

ferent requirements of setuid calls depending on their logic.

It is crucial to divide program’s execution contexts of a whole

program level into a finer-grained process level to prevent over-

privilege of setuid calls. We solve this problem by learning and

run-time monitoring with a process hierarchy context.

• Automated extraction of process-aware setuid contexts:
We present an automated approach to extract process-aware

contexts of setuid calls from a program using static analysis

and dynamic training. Data context and call contexts of setuid
calls are indexed with a process hierarchy context to individualize

each process behavior.

• Efficient and practical hardening of setuid calls using re-
striction on process context:We propose a practical approach

to harden data context and call context of setuid calls indi-

vidualized per process. It tightens previously over-provisioned

privileges due to the failure of distinction on processes and effec-

tively prevents security exploits and bugs with minimal overhead.

In the benchmarks of multiple commonly used client and server

software, the performance overhead of our system is under 0.54%.

2

Session 5: Access Control and Information Flow CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

210

Dynamic
Training
Dynamic
Training

01010001
01001001
010111101
010110110
100101011

r = setuid(0)
Statc

Analysis
Statc

Analysis

BinarySource Code

Process Context Analysis

Profle for a programProcess Context Enforcer

01010001
01001001
010111101
010110110
100101011

Allowed

Binary

App Kernel

Privilege
Sensitve Code

Privilege
Operaton

setuidsetuid

Process-aware Context Checkers

Process
Data & Call

Contexts

Process
Data & Call

Contexts
Root

Child

Grand
Child

Process
Data & Call

Contexts

Process
Data & Call

Contexts

Process
Data & Call

Contexts

Process
Data & Call

Contexts

Child
Extracton
of Process
Hierarchy
Context

Extracton
of Process
Hierarchy
Context

Extracton
of Process
Hierarchy
Context

Extracton
of Process
Hierarchy
Context

Process
Data & Call

Contexts

Process
Data & Call

Contexts

Process
Hierarchy
Context

Process
Hierarchy
Context

Denied

Process
Hierarchy
Context

Process
Hierarchy
Context

Process
Hierarchy
Context

Process
Hierarchy
Context

Process
Hierarchy
Context

Process
Hierarchy
Context

Figure 2: Architecture of PoLPer.

Figure 3: Example of process hierarchy context.

2 THREAT MODEL
We assume a strong adversary who can compromise any program in

user space, including privileged programs with setuid calls, using

a non-administrative user account. For example, the adversary

has a login to a user account using a stolen password and hijacks

the control flow of a privileged program by exploiting software

vulnerabilities. The adversary can also manipulate the privileged

program’s code and data in either disk or process memory.

However, based on the wide availability of code injection pre-

vention [37, 53] and file-based [31] integrity checkers, näive ma-

nipulation in file or code injection would be easily detectable. Thus

we assume that the binary file and code integrity of the privileged

program, user-level libraries, system libraries, the operating system,

and PoLPer can be verified. The operating system and the run-time

enforcer of PoLPer inside the kernel space are part of the trusted
computing base, and thus cannot be altered by the adversary.

In our usage model, a user is either a software developer who

can provide a default policy for the program or a system adminis-

trator who can customize the policy based on an environmental

context on the deployed system. This model is reasonable as seen in

major security tools like AppArmor or SELinux that take a similar

approach to deploy policies for various software. Therefore, we as-

sume that PoLPer has access to the program binary (source code is

optional) along with its workload regarding setuid calls in normal

usages before its deployment and any adversarial attempt. Also if

its source code is optionally available, PoLPer further improves the

precision of policies. Because an administrator handles the program

before its installation, this prior access is reasonable. This paper

focuses on software written in C/C++ and compiled to native binary

code.

3 DESIGN OF POLPER
3.1 Architecture
In this section, we present the architecture of PoLPer. Our goal
is to enforce only required privileges for the setuid calls of ap-

plication code, which are essentially the setuid calls identified in

the program code and specified by developers. There are multiple

aspects in how this family of system calls is used. First, there can

be more than one process involved in program execution. In many

server programs, the executed part of code and corresponding roles

of processes are different even though they share the exact same

code image. Differentiating such roles is essential to achieve least

privileges (i.e., we prohibit a setuid call and a potential exploita-

tion to a worker process which does not require a setuid call). We

achieve this aspect with our novel process hierarchy context. Second,
setuid family calls have different behaviors and risks depending

on the input parameters (e.g., a nobody account vs. the root ac-

count) and process. Therefore, the values of parameters passed

to privilege operations must be carefully inspected and restricted

based on the required values profiled for each process. We extract

this aspect, called process data context, from the program code with

static analysis and dynamic training. Lastly. setuid calls should be

inspected in a fine-grained way regarding which privilege sensitive

code can invoke them in what specific call contexts in each process.

Therefore, we learn and enforce the detailed call stack patterns of

setuid system calls given each process and this aspect is called

process call context.
Figure 2 presents the architecture of PoLPer regarding how it

learns and enforces data and call contexts indexed by each process’

context. In the first process context analysis stage, given a program,

its code and run-time execution is analyzed using static analysis

and dynamic training to extract the process contexts of setuid
calls. In the second stage, the process context enforcement, the

extracted contexts are loaded into the OS kernel. Whenever the

program calls any setuid system calls, its process hierarchy, data,

and call contexts are cross-checked if the call complies with the

extracted contexts. Any violating call is detected and prevented as

a misuse of seuid system calls.

In this paper, we focus on setuid family calls as one instance

of privilege operations because of their prevalence in major legacy

software and corresponding attacks. We note that our system can

be easily extended to apply our techniques to other operations such

as capabilities as future work.

3.2 Extraction of Process Hierarchy Context
Process Behavior Role: Programs that leverage multiple pro-

cesses and/or threads often leverage different units of execution to

decompose functionalities. Each class of processes/threads executes

a specific behavior, restricted to a subset of the code although the

entire code image is shared across all processes and threads. For

example, popular server programs such as sshd and apache use

child processes as workers while the parent process manages a pool

of workers and distributes the workload. To describe such differ-

ent characteristics of a set of processes/threads inside the same

program, we use the term process behavior role.
Such different behavior roles imply that the capability to run

setuid calls are over-provisioned due to the inability to apply

3

Session 5: Access Control and Information Flow CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

211

individualized policies for processes. Unrestricted capabilities to

run setuid calls pose the risk that such code can be exploited

through a vulnerability.

Inferring Process Behavior Role with a Process Hierarchy
Context:We infer a process’ behavior role using the hierarchical

position of it relative to other processes. As process creation system

calls (e.g., fork/clone) are invoked, the processes and threads

inside a program form parent and child relationships, resulting in

a process tree where the root is the first process of the program

(Figure 3). We use the hierarchical distance between the process

and the root process in the tree to infer its behavior role. We call

this distance the process hierarchy context.

Our key intuition is that a process usually exhibits a different

role depending on where it is located within a process hierarchy

tree. Thus, we differentiate the process’ behavior role using the

relative distance from the root (i.e., depth), which becomes our

metric to systematically infer and capture a process behavior role.

In Figure 3 the root of a program is the oldest parent process

whose parent’s program image is different from its program image.

This may not be determined at the program creation time because,

in many OSes (e.g., Unix variants like Linux), the first process of a

program is a child clone of a program invoker. Later, its program

image is replaced using another system call such as exec. Thus
our algorithm determines this distance or depth at a program im-

age replacement call (e.g., exec) and caches its result for run-time

usage. The depth increases when a process forks/clones a child

process/thread.

PoLPer uses process states in an operating system kernel. A pro-

cess node represents a process state (e.g., a task_struct in Linux).

When a setuid call is invoked, PoLPer determines the current pro-

cess node (i.e., the current process in OS). Given a process node,

our algorithm follows the reference for its parent until it reaches

the root process of the program, whose parent has a different pro-

gram image and has the depth 0. Then its depth is calculated as

the distance of a traversal to the root process. If there is more than

one role in the same depth, this scheme determines them as one

combined role.

Given our evaluation, we found that this scheme is effective

to distinguish a process behavior role at minimal run-time cost.

However, in complex software, it is possible in some rare cases that

multiple processes with the same depth can play different roles.

Our current policy over-approximates this situation as combined

process behavior. PoLPer can improve the precision by using addi-

tional program contexts, such as the call stacks of the origin process

during fork and the child.

3.3 Extraction of Process Data Context
setuid system calls use parameters to represent various informa-

tion involved to change a privilege in each process context. Given

the logic and the context where a program makes a transition of

privilege from one to another, the parameters will have correspond-

ing particular values.

The patterns of parameters are learned with the process hier-

archy context to differentiate unique parameter behavior of each

process role. We use a hybrid approach combining dynamic and

static analyses for the advantages of both approaches.

Learning ProcessDataContext usingDynamic Training:Our
dynamic and static analyses have different contributions to captur-

ing data context. The dynamic analysis captures crucial information

including process hierarchy context and concrete values from out-

side of a program such as the values from files, network, or OS. The

static analysis can further contribute to the patterns by discovering

possible data flows systematically.

The same environment and input for setuid system calls are

used for dynamic and static analyses. Our dynamic analysis starts

with the program binary under the account assumed in the exe-

cution environment. When one of setuid family system call is

invoked, it traps to our analysis module. Our module records con-

crete parameter values along with the process hierarchy context

and call context at the setuid call.

Enhancing Data Context using Static Analysis: If source code
is available, static analysis systematically discovers over-approximated

potential data contexts. Combined with dynamic results, it further

improves learning which will be presented in Section 5.2. Our anal-

ysis discovers data contexts with the following details. After the

analysis, the result is associated with the profile from dynamic

training.

• Constant Values: We found many instances of constant values

in the setuid calls of evaluated programs where the parameter

values are exactly determined in the code. For instance, some code

always invokes a setuid call to set the root privilege. Then our

analyses find the constant value corresponding to the root. These

invariant cases are effective for tightly restricting the parameter.

• Symbolic Values:We also found that some parameters can be

determined systematically by certain API calls. For instance,

getuid system API obtains the current user ID from OS. A fre-

quent use case invokes this API first, followed by a setuid call
based on the returned value. Essentially there is a strict data flow

from the source using a symbolic value, the current user ID, to the
setuid call. Thus when this program is running under a certain

account, we can have a specific value for the parameter given the

context of the account. We first determine this case from static

analysis, and then it is checked by accessing the user ID in the

OS state (e.g., task_struct).
• External Values: There are other cases where these parameters

are derived from various other constants or variables, an input, or

OS. We use dynamic training to determine concrete values given

in our execution environment. Technically it would be feasible to

determine the source of such variables using advanced program

analysis techniques (e.g., system level information tracking) as a

future improvement.

We use the UniSan framework [36] as our basis of context-

sensitive data flow analysis and extended various functionalities

such as the coverage of global scope. The following steps show a

high-level description on how our Algorithm 1 works.

• Line 1: The input for this analysis is a set of setuid system calls

and program code. We select 8 setuid system calls in Linux in

this work.

• Line 2-5: Static analysis first determines the list of call sites for a

setuid call p, which is one of the supported set of setuid system

calls shown as P . For each call site s of p, data flow analysis is

performed.

4

Session 5: Access Control and Information Flow CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

212

Algorithm 1 Static data context extraction.

C : Code

P : Set of setuid family system calls

F : Profile of data context

1: function ExtractDC(C, P)
2: for p ∈ P do
3: S = Find all call sites of p in C
4: for s ∈ S do
5: F [p, s] = OnSetU IDCall(p, s)
6: end for
7: end for
8: end function
9: function OnSetUIDCall(p, s)
10: res = []
11: R = Get a parameter list in the invoca-

tion

12: for r in R do
13: if r is a constant then
14: res[r] = (Static,val(r))
15: end if
16: if r is a return from a function F

then
17: res[r] = (Dynamic, return(F))
18: else
19: V is all variables and constants

20: success,matches =

FindReachableDataFlow(V , r)
21: if success == True then
22: out = []
23: form ∈matches do
24: [type,val or F] =m
25: switch type do
26: case Const
27: out = out ∪

(Static,val)
28: break
29: case Function
30: out = out ∪

(Dynamic, return(F))
31: break
32: end for
33: res[r] = out
34: else
35: res[r] = (Dynamic,Null)
36: end if
37: end if
38: end forreturn res
39: end function

• Line 9-11: For each privilege sensitive code s calling a setuid

function p, a list of its parameters in the invocation is obtained.

• Line 13-15: If a parameter is a constant value, the analysis stops

and records the value.

• Line 16-17: If a parameter is a return value from a function F (e.g.,

getuid()), this case is handled as a symbolic variable.

• Line 18-20: If a parameter r is a variable, an inter-procedural data

flow analysis is performed to find the source of the value. To find

the sources, it first obtains a set of all variables and constants,

denoted as V . And then, it checks whether any item v reaches r .
• Line 21-33: When one or more constant or variable is used for

the parameter r , possible values are stored in the profile. If the

source that r ’s value is from is a constant (Line 26-28), the cor-

responding value is stored. If it is returned from a function, its

value is determined in dynamic training (Line 29-31).

• Line 34-35: If no variable or constant can reach a parameter r , it
could be due to limitation of static analysis. Then its concrete

value is determined in dynamic training.

3.4 Extraction of Process Call Context
A call stack at a setuid system call can identify a specific code

location and call context how the setuid call is made. By being

recorded together with the process hierarchy context this informa-

tion can represent specific patterns of setuid calls in each process

role.

We leverage dynamic analysis for high accuracy call context

(i.e., call stack). Static analysis may be able to determine the call

context as well. However, if the call stack involves dynamically

linked library code, which may have internal function calls within

the library, dynamic analysis provides higher accuracy.

3.5 Run-time Enforcement of Process Contexts
This section presents how to detect execution anomalies based on

the process contexts of setuid family system calls.

When a program executes, any invocation of a setuid call is

captured by the system call interposition layer. The process hier-

archy context and process contexts are collected and compared

with the profile that was previously extracted from the program to

determine whether they are part of known behavior.

Any unknown behavior is denied returning a failure code and

logging of this violation incident (to be exported to a system admin-

istrator). Upon a denied attempt, this detailed log showing program

internal states will help the developer and an administrator to un-

derstand how (process hierarchy context, call context) and with

what parameters (data context) this application was about to be

exploited but protected.

4 IMPLEMENTATION
In this section, we present the technical details in the implementa-

tion of PoLPer. There are two major components: process context

analyzer and enforcer.

Process Context Analyzer: Our static data flow analysis is im-

plemented by extending UniSan [36], which is based on the LLVM

framework [35]. UniSan is designed for eliminating information

leak vulnerabilities in OS kernels caused by uninitialized data reads.

We use its functionalities to track data flow for identifying the data

context in this paper. Our major extensions are three-fold: (1) check-

ing reachability from an object allocation site to privilege operation

calls, (2) collecting possible store values (e.g., foo = getuid();)
during tracking data flow, and (3) tracking global objects (UniSan

only track heap and stack objects) since the parameters may have

values derived from global objects. Dynamic training is performed

by using process context enforcer to be explained next with a per-

missive learning mode which records process contexts on setuid
system calls.

Process Context Enforcer: This component residing in the OS

kernel intercepts an invocation of a setuid family system call

and inspects the run-time states. We implemented this component

using Kprobes [29], a kernel-based probing mechanism which can

dynamically hook any kernel routine. Note that Kprobes avoids any

instrumentation or modification inside software binary or in the

user space. Thus it provides a near-native speed of execution of the

program code without intrusively instrumenting the application.

PoLPer inserts Kprobes hooks on the entry points of setuid fam-

ily system calls. When any setuid system call is invoked, PoLPer
takes a control through Kprobes and extracts process hierarchy,

data, and call contexts. When this module is used for dynamic analy-

sis in a learning mode, the extracted contexts are temporarily stored

in kernel heap, then it is stored in a file as a profile for the pro-

gram. When it is used for the enforcement, the extracted run-time

contexts are verified whether they comply with the profile.

When PoLPer inspects the process hierarchy, data parameters,

and the call stack on setuid calls, we applied multiple optimization

code to keep the run-time overhead minimal.

5 EVALUATION
In this section, we evaluate PoLPer in multiple aspects: (1) detection

of real-world exploits, (2) multi-context extraction, (3) performance

evaluation, and (4) case studies.

Experimental Setting:All evaluationswere performed onUbuntu

Linux 14.04.5 LTS with a quad-core 3.40GHz CPU (Intel i7-6700),

1TB HDD, and 16GB RAM. Note that we chose the old OS version

5

Session 5: Access Control and Information Flow CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

213

to evaluate real exploit case studies in situ. Our design and imple-

mentation have no restriction to support other Linux operating

system distributions.

Evaluation Target Programs: We have tested PoLPer with the

following real-world desktop and server programs: Ping, Sudo,

AccountsService, Upstart, Telnet, Shadow, SSH, Wireshark, Apache,

and Nginx. These are common selected applications which use

setuid system calls with a varying size and complexity from small

utility programs (e.g., Ping) to larger server programs like Apache.

As described in our threat model, this work focuses on the software

written in C/C++, and compiled to a native binary.

5.1 Detection of Real-world Security Exploits
We evaluate the effectiveness of PoLPer using real-world exploits

as illustrated in Table 1. The first column shows exploit patterns.

The following columns present the details of attack exploits re-

garding the name of the software that is being attacked, the ex-

ploit name, and the privilege operations exploited. A comparison

between PoLPer and other approaches follows. CFI (control flow

integrity), NCI (non-control data integrity), DFI (data flow integrity)

respectively refer to the approaches that detect control flowmanipu-

lation [3], non-control datamanipulation [12], and themanipulation

of both [10]
3
. Note although DEP [37, 53] has been widely deployed

to prevent stack smashing attacks, it has not been successful due to

the ROP attacks which can easily disable DEP and transfer control

to the shell code using mprotect in Linux and VirtualProtect in

Windows [1, 2].

PoLPer uses Process Data Contexts (P-DC) and Process Call
Contexts (P-CC) determined using process hierarchy contexts at

run-time to detect each exploit. For all cases, PoLPer detects them
by using process contexts, while only one of CFI or NCI is able to

detect each attack. Data flow integrity (DFI) approach can detect

both of control data and non-control data manipulation but with

a significant overhead [10]. PoLPer can detect these exploits with

negligible overhead (see Section 5.3). In all cases, the contexts of

privilege sensitive operations are extracted and enforced while

identifying the process hierarchy context at run-time. PoLPer can
complement DEP, CFI, NCI when they fail depending on the exploit

type and it offers efficient prevention comparable to DFI with much

low overhead to be presented.

The top two cases use data-oriented programming to manipulate

data without changing the control flow of a program where control

flow integrity (CFI) cannot detect them. The following cases involve

a change in its call stack where a setuid system call is called. CFI,

DFI, and PoLPer (P-CC) are able to detect the attacks while NCI

could not detect them.

Ground Truth Validation: As a ground truth validation, we man-

ually examined the source code to locate relevant setuid family

calls of 1∼25 function call instances in only 10 minutes∼1 hour due
to a small well-defined scope of privilege functions. In our environ-

ment set up and the workload given, we did not face false positives

or false negatives, and manual code examination also found our

analyses properly cover the code relevant to our experiments.

3
Regarding [10], this approach can detect both control data (e.g., function pointers

and return addresses) manipulation and non-control data manipulation.

5.2 Extraction of Process Contexts
Next, we evaluate the details of PoLPer regarding the extraction of

multiple contexts.

Extraction of Process Hierarchy Context: Table 2 presents the
process hierarchy context extracted from dynamic training. We

cover 8 setuid family system calls in Linux shown in column

headers for the programs shown in the row headers. seteuid
and setegid columns are omitted since they are replaced with

setresuid and setresgid calls. Column D0, D1, D2 respectively

show the process hierarchy information of depth 0, 1, and 2 (i.e.,

the root, a child of the root, a grandchild of the root). Inside each

column, there are two sub-columns, P and I. P shows the number

of process instances and I shows the average number of setuid
call invocation per a process.

This table illustrates process-aware privilege operations under
various process depths (depth 0∼2). This new context of process

hierarchy enables more concise and stricter contexts for each indi-

vidual depth by avoiding the merge of the contexts for all depths.

At run-time each process is restricted only using the contexts of its

depth.

Reduction of Rules: Each context of a process is described as

an enforcement policy rule. Process hierarchy context enables the

reduction of run-time complexity by checking only the rules as-

sociated to each process depth. Table 3 shows this runtime cost

reduction. The reduction ratio of enforcement rules (shown as Rule

cut) is calculated as
Process aware rules

Non-process aware rules
=

∑N
n=1 |Di |ni
N |∪Ni=1Di |

where Di

is a set of distinct rules for a depth i , ni is a number of processes

for a depth i , and N is the sum of ni . In general the programs with

multiple processes have high percentage of rule reduction. Overall

there is 48.92% reduction of the rules on average.
Extraction of Static Data Context: Table 4 shows data contexts
systematically extracted from source code. For each setuid system
call, our static analysis determines where the parameters come

from. The sources of parameters are shown as four notations. If the

parameter comes from a function call (e.g., setuid(getuid())),
it is shown as F. The parameter coming from a constant (e.g.,

setuid(0)) is counted as C. When the parameter is determined

from a data flow analysis which eventually derives it from a constant

or a function, it is shown as V (e.g., int uid = 0; setuid(uid)).
If the static analysis cannot determine the source of a parameter, it

is indicated as N. Since several programs have complex code/data

structures and initialize values using the values from a file (e.g.,

/etc/passwd), this N case is supported by dynamic data context

analysis. Note this is an implementation issue of static analysis

which can be improved by advancing the scalability of data flow

analysis or with advanced system-wide analyses.

Extraction of Dynamic Process Data and Call Context: The
run-time data context and call context in our dynamic analysis are

shown in Table 5. Column C represents the diversity of call contexts

for each privilege operation and Column D shows the average

number of distinct parameters per each context. For instance, if C
is 1, there is only one particular way to call a privilege operation

inside the program. If only one value is used for its parameter, D
would be 1. For the same reason as Table 2, seteuid and setegid
columns are omitted due to their replacement by other operations.

6

Session 5: Access Control and Information Flow CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

214

Exploit
Pattern Vul. Program Exploit

Name (EDB)

Setuid
Syscall

Exploited

Detected
PoLPer CFI NCI DFIP-DC P-CC

Modify Setuid

Parameters

Sudo (N/A) setuid ✓ ✗ ✗ ✓ ✓
Wu_ftpd (N/A) seteuid ✓ ✗ ✗ ✓ ✓

Run privilege

operation

(e.g., setuid(0))

before running

a shell

Overlayfs

37292-2015 setresuid, setresgid ✗ ✓ ✓ ✗ ✓
39230-2016 setresuid ✗ ✓ ✓ ✗ ✓

Glibc 209-2000 setuid, setgid ✗ ✓ ✓ ✗ ✓
Mkdir 20554-2001 setuid, setgid ✗ ✓ ✓ ✗ ✓

KApplication 19981-2000 setuid, setregid ✗ ✓ ✓ ✗ ✓
Suid_dumpable 2006-2006 setuid, setgid ✗ ✓ ✓ ✗ ✓
Execve/ptrace 20720-2001 setuid ✗ ✓ ✓ ✗ ✓

Splitvt 20013-2000 setuid ✗ ✓ ✓ ✗ ✓
Openmovieeditor 2338-2006 setuid, setgid ✗ ✓ ✓ ✗ ✓

Traceroute 178-2000 setuid, setgid ✗ ✓ ✓ ✗ ✓
VMWare 19371-1999 setuid ✗ ✓ ✓ ✗ ✓

Su (N/A) setuid ✗ ✓ ✓ ✗ ✓

Table 1: Evaluation of security exploit analysis. This table presents the effectiveness of PoLPer for real-world exploits. P-DC
and P-CC respectively represent data contexts and call contexts by process hierarchy context.

Setuid Setreuid Setresuid Setgid Setregid Setresgid
D0 D1 D2 D0 D1 D2 D0 D1 D2 D0 D1 D2 D0 D1 D2 D0 D1 D2

P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I
Ping 1 1 -

Sudo 2 1 1 1 - - - - - - - - 5 10 2 1 - - - - 3 1 - - - - - - - - 5 9 - - - -

Xterm 11 1 7 1 - - - - - - - - - - - - - - - - 7 1 - - - - - - - - 7 1 - - - -

Cron - - - - 1 1 - - - - - - - - - - - - - - - - 1 1 - - - - - - - - - - - -

Telinit 2 1 -

Telnet-Login 1 1 1 1 - - - - - - - - - - - - - - - - 1 1 - - - - - - - - - - - - - -

Login - - 1 1 - - - - - - - - - - - - - - 1 1 - - - - - - - - - - - - - - - -

SSH & SCP - - - - 5 1 - - 2 3 - - - - 2 3 5 2 - - - - 5 1 - - 2 5 - - - - 2 6 5 2

WireShark - - - - - - - - - - - - 1 1 - - - - - - - - - - - - - - - - 1 1 - - - -

Apache - - 1 1 - - - - - - - - - - - - - - - - 1 1 - - - - - - - - - - - - - -

Nginx - - 1 1 - - - - - - - - - - - - - - - - 1 1 - - - - - - - - - - - - - -

Table 2: Extracted process hierarchy context. This table presents setuid syscalls and the process hierarchy (column head) for
each application (row head). P is a number of process instances and I is an average number of setuid calls per process called.
D0 is the root, Dn is a nth child of D0. It illustrates PoLPer’s novel capability to learn and detect process-aware contexts.

Programs Non-process
aware rules

Process
aware rules Rule Cut (%)

Ping 1 1 0

Sudo 352 196 44

Xterm 576 296 49

Cron 2 2 0

Telinit 4 4 0

Telnet-Login 6 3 50

Login 4 2 50

SSH & SCP 182 88 52

WireShark 2 2 0

Apache 2 2 0

Nginx 2 2 0

Table 3: Reduction of rules due to process-aware
restriction using process hierarchy contexts.

Ground Truth Validation:We performed a ground truth valida-

tion using manual analysis of the source and confirmed that the

process hierarchy, call, and data contexts from our static and dy-

namic analyses correspond to the application behavior in our test

bed’s configurations and workloads.

5.3 Performance Impact
We evaluated the performance impact of PoLPer in two aspects:

the run-time overhead caused by the inspection of an individual

setuid call, and end-to-end performance of applications.

Micro-benchmark: This benchmark measures the cost of the in-

spection of a setuid family system call which includes (1) an in-

terposition of a system call, (2) getting its process hierarchy depth,

its parameter(s), and call stack information, and (3) retrieving and

comparing the run-time values with the PoLPer’s profile.
Note that all data types used by setuid family system calls have

well-defined sizes (e.g., integers) and do not use complex data types

such as strings, arrays, or pointers. Therefore, data contexts are

efficiently checked without any uncertainty of overhead.

Figure 4 depicts the overhead of PoLPer’s inspection of a setuid
system call. This graph shows the run-time overhead of a setuid
call verification with a varying size of call contexts and data con-

texts. The X-axis represents the number of call context and the

Y-axis indicates verification time in microseconds. The complexity

of inspection due to different data context size is shown by differ-

ent graphs. As the size of data context (e.g., parameters) increases

from 1 to 10 (shown as d1 to d10), inspection time of a system

call increases. Also, a higher number of call contexts causes higher

overhead.

7

Session 5: Access Control and Information Flow CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

215

Program Setuid Seteuid Setreuid Setresuid Setgid Setegid Setregid Setresgid
F V C N F V C N F V C N F V C N F V C N F V C N F V C N F V C N

Ping 1 -

Sudo - - 3 1 - - 3 3 - - - 1 - - - - - - - 2 - - - 2 - - - - - - - -

Xterm - 1 - 4 2 - 1 - - - - - - - - - - 1 - 3 - 2 - - - - - - - - - -

Cron 1 1 - 1 2 - 1 1 1 - - - - - - - - - - 1 - - - - - - - - - - - -

Telinit 3 -

Telnet-Login - - 1 - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - -

Login 1 - 4 - - - - - - - - - - - - 1 - 1 - - - - - - - - - - - - - 1

SSH & SCP 2 - - - 2 5 1 3 - - - 1 - - - 3 2 - - 2 3 - - - - - - 1 - - - 2

WireShark - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - 1 - -

Apache - - - 4 - - - - - - - - - - - - - - - 3 - - - - - - - - - - - -

Nginx - - - 1 - - - - - - - - - - - - - - - 1 - - - - - - - - - - - -

Table 4: Extracted static data context. This table presents the number of parameters extracted using source code analysis.
Sources of parameters: function calls (F), constants (C), variables (V), and others (N).

Program
Setuid Setreuid Setresuid Setgid Setregid Setresgid

D
0

D
1

D
2

D
0

D
1

D
2

D
0

D
1

D
2

D
0

D
1

D
2

D
0

D
1

D
2

D
0

D
1

D
2

C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D

Ping 1 1 -

Sudo 2 1 1 2 - - - - - - - - 9 1 2 2 - - - - 3 2 - - - - - - - - 7 3 - - - -

Xterm 11 1 7 1 - - - - - - - - - - - - - - - - 7 1 - - - - - - - - 7 1 - - - -

Cron - - - - 1 1 - - - - - - - - - - - - - - - - 1 1 - - - - - - - - - - - -

Telinit 2 1 -

Telnet-Login 1 1 1 1 - - - - - - - - - - - - - - - - 1 1 - - - - - - - - - - - - - -

Login - - 1 1 - - - - - - - - - - - - - - 1 1 - - - - - - - - - - - - - - - -

SSH & SCP - - - - 3 1 - - 2 2 - - - - 2 2 3 1 - - - - 3 1 - - 2 2 - - - - 2 1 3 1

WireShark - - - - - - - - - - - - 1 1 - - - - - - - - - - - - - - - - 1 1 - - - -

Apache - - 1 1 - - - - - - - - - - - - - - - - 1 1 - - - - - - - - - - - - - -

Nginx - - 1 1 - - - - - - - - - - - - - - - - 1 1 - - - - - - - - - - - - - -

Table 5: Dynamic process data and call contexts indexed by process hierarchy context. Process hierarchy depth (Dx), a number
of call contexts (C), and an average number of parameters (D) for each depth (e.g., D0: root, D1: a child, D2: a grand child).

1 4 16 64 128 192 256 512 1024

20

40

60

80

100

call context count

v
e
r
i
fi
c
a
t
i
o
n
t
i
m
e
(
µs
)

d1

d2

d5

d10

Figure 4: Micro-benchmark of inspection overhead.

If there is one call context with one data context for a setuid call,
its verification takes 18 µs. As the number of call and the size of data

context are increased, the overhead increases as well. These cases

are simulations of extreme situations with a lot of call contexts and

data contexts for setuid system calls showing how PoLPer will
work in challenging cases. Real-world programs typically have only

a small number of call contexts and data contexts as described in

Section 5.2. Therefore, real-world overhead is typically insignificant

as presented next.

Program Base (s) PoLPer (s) |I | Overhead (%)
Ping (s20121221) 9.0019 9.0039 1 0.02

Nginx (1.4.6) 11.522 11.539 0 0.14

Apache (2.4.7) 18.250 18.286 0 0.1

Telnet (0.17-36) 1.001 1.004 5 0.29

SCP (6.6.1p1) 0.1656 0.1665 28 0.54

Table 6: End-to-end benchmarks.

End-to-end benchmarks: We performed another set of experi-

ments to measure the overhead of PoLPer in the end-to-end per-

formance of application software. A list of benchmarked software

was selected based on the popularity of server and client software

which have privilege sensitive code invoking setuid system calls.

The selection includes from small utility programs such as ping to

large server programs (e.g., Nginx and Apache). Based on our study

of these desktop and server software, the overhead is typically not

strongly dependent on the workload because generally the setuid
calls are not used per each workload but per an initialization of

software. Table 6 shows the data. The column |I | shows the number

of setuid calls.

Overall the performance impact of setuid inspection is very

marginal. First, we tested ping where each try sends 10 packets

repeated 10 times and overhead was 0.02%. Ping has one setuid
call verified. Nginx and Apache servers are tested by using Apache

Bench (normally used for measuring of HTTP web servers). To

measure overhead, we repeated 100K HTTP GET requests 10 times

with concurrency of up to 100 requests to the localhost. There

was no overhead other than measurement errors since Nginx and

Apache do not have setuid calls verified during the benchmark

8

Session 5: Access Control and Information Flow CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

216

workload. Login/logout behavior was tested with telnet. This work-

load triggered 5 setuid call verifications. We repeated this process

10 times to get an average performance number (0.29%). Another

popular software for login/logout is SSH, which is tested with SCP

as another selection because they share authentication logic. SCP

was measured by downloading a 1KB file 10 times from a local di-

rectory. During this process, there were 28 verifications of setuid
calls which caused overhead of 0.54%.

5.4 Case Study: A Real-world Data-oriented
Attack

We leverage a vulnerability in sudo to show how PoLPer detects
and prevents exploitation. Hu et al. [24] proposed an approach to

constructing data-oriented attacks automatically and showed an

attack on sudo using its format string vulnerability (CVE-2012-

0809). This attack changes ud.uid to the root ID value using the

format string vulnerability in the sudo_debug function as shown

in Figure 5.

PoLPer detects this attack using a data context shown in Table 7.

ud.uid should be initialized by getuid(), which has an expected

value of 1000. This exploit is detected because it sets zero to ud.uid.

s t r u c t u s e r _ d e t a i l s {

u i d _ t u id ;

. . .

} u d _ d e t a i l s ;

//in get_user_info()

ud . u id = g e t u i d () ;

//in sudo_debug()

v f p r i n t f (. . .) ;

//in sudo_askpass()

s e t u i d (ud . u id) ;

Figure 5: Sudo code example.

Depth 1

Priv. Op. setuid

Parameter

(Profile) 1000 (from getuid()), -1, -1

(Exploit) 0 (root shell), -1, -1

Inode Offset File Function

21 158023

0x32 +

0xb75f7b44

../libc.so.6 -

20 10171 0x8053080 ../bin/sudo sudo_askpass

...

3 10171 0x804f4af ../bin/sudo main

2 158023 0xf3 + 54653 ../libc.so.6 -

Call Stack

1 10171 0x8049dd1 ../bin/sudo -

Table 7: Process-aware detection of the sudo exploit.

5.5 Case Study: Process-aware Detection of a
Data-oriented Attack

In Figure 6, we present an example of data modification attack that

highlights the unique capability of process-aware detection that can

distinguish the abnormality of the attack. In this example, setuid
call sets a user ID from a variable uid determined inside an if-else

statement. Based on code analyses both non-root-id (from getuid)

i n t c h a n g e _ p r i v i l e g e (i n t u id) {

. . .

r e t u r n s e t u i d (u id) ;

}

vo id v u l n e r a b l e _ f u n c t i o n () {

i n t u id ;

char b u f f e r [1 0] ;

i n t p id = f o r k () ;

i f (p id == 0) { //child process area

u id = g e t u i d () ;

. . .

s t r c p y (bu f f e r , a rgv [1]) ; // manipulate uid

(buffer overflow)

c h a n g e _ p r i v i l e g e (u id) ;

non_root_works () ;

} e l s e { //parent process area

u id = r o o t _ i d ;

c h ang e_p r v i l e g e (u id) ;

roo t_works () ;

}

. . .

}

Figure 6: Process-aware exploit example.

Non-process-aware Process-aware
(parent/child) (parent)

Priv. Op. setuid 0 0 0 0 0 Depth 0

Parameter Priv. Op. setuid

Profile

root_id

non-root-id

Parameter

Exploit root_id Profile root_id

(child)

Depth 1

Priv. Op. setuid

Parameter

Profile non-root-id

Exploit root_id

Table 8: Comparison of non-process-aware and
process-aware enforcement.

and root_id should be permitted because they are used respectively

by a child and a parent process.

When an adversary manipulates the uid using a buffer overflow

in the strcpy function to obtain the root_id and a corresponding

root shell in a child process, a non-process-aware approach cannot

block this attack because both root and non-root-id are legitimate

as shown in Table 8. In contrast, PoLPer will prevent this exploit
attempt because it distinguishes the setuid parameters in parent

and child processes at run-time and enforces that only non-root-id

is allowed in a child process. This case highlights a unique strength

of process-aware detection.

9

Session 5: Access Control and Information Flow CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

217

6 DISCUSSION
Extended Support for Other Privilege Operations: This work
focuses on the protection of setuid family system calls in Linux as

these system calls are commonly leveraged for privilege escalation

attacks. Privileged processes can bypass kernel permission checks

and it is hard to control their privileges in a fine-grained way.

Therefore, from Linux kernel version 2.2, privileges were divided

into several categories according to capabilities [8].
Although capabilities were designed to remedy the problems of

setuid family system calls, many popular legacy programs do not

adopt them. Therefore, the vulnerability and problems of setuid
calls still remain.

Conceptually, capabilities are also privileges and PoLPer can
be extended to cover these sensitive operations as a future work

— this extension is pure engineering effort and orthogonal to the

conceptual work presented in this paper.

Analysis Coverage: In general, the focus of our code analysis is

small relative to the full size of the application since setuid system
calls are a small subset of all available code and can, therefore, be

evaluated by enumerating all call sites of setuid calls. As a ground
truth validation for our evaluations, we manually examined the

source code of the applications evaluated and we found setuid fam-

ily calls of 1∼25 function call instances only in 10 minutes∼1 hour
due to a small well-defined scope of privilege functions. Manual

code examination confirmed that our combined static and dynamic

analyses achieve complete coverage relevant to our environment

and the workload giving no false positives in experiments.

Based on our experiments, this is reasonable as inmany programs

setuid calls are used for the initialization of services which are

common across workloads. For example, many client programs (e.g.,

ping, sudo, su) and server programs (e.g., Apache, Nginx) follow

this pattern. Another set of programs (e.g., ssh, scp) exhibits
complete coverage by having commonly used functions in every

transaction which cannot be missed by either of our analyses.

However, if the software is written in a way which uses frequent

setuid calls with diverse patterns in complex software structures,

it may cause high complexity in the static and dynamic analyses to

achieve complete contexts. As a complementary analysis method,

fuzzing framework such as AFL [58] could help to further improve

the coverage of static and dynamic analyses if needed for such

complicated programs.

Mimicry Attacks and Manipulation of Call Contexts: For a
mimicry attack where a system call sequence may fall within the

original program’s pattern, our approach will validate data param-

eters, and call stacks with process hierarchy contexts on setuid
calls beyond a system call sequence. A combination of these con-

texts will significantly raise the bar to make a meaningful attack

or maintaining its control without a detection. As another possible

attack, a fake stack on the memory can be easily determined by

PoLPer because it has complete knowledge on the process’ stack

memory. Misleading the view of stack walking via the manipula-

tion of the ebp register can be easily caught because our approach

uses stack layout from .eh_framewhich verifies the register values
and stack consistency in the unwinding steps similar to [20]. As a

worst-case scenario, even though the adversary managed to bypass

control flow integrity check, our approach applies multiple context

checks on the data, process as well. Thus it would be considerably

challenging to evade all of them. PoLPer can be further improved

to be resilient to advanced stack attacks by combining with several

known techniques such as a shadow stack [15] and Control-flow

Enforcement Technology (CET) [26].

Address Space Layout Randomization: The kernel component

of PoLPer uses information regarding memory layout including

individual library addresses and therefore supports ASLR as we

record not absolute addresses but files and offsets.

Generalization ofModel: As we described in Section 2, our usage
model of PoLPer is that system administrator customizes the policy

based on an environmental context on the deployed system. This

is a similar model used in major security tools like AppArmor or

SELinux to deploy policies. On the deployment of a new software,

this model is updated along with the installation via a new training.

We are expecting that updating rules for new applications would

not be different from already tested applications. This is because

PoLPer is based on the general program behavior of setuid system
calls such as process hierarchy, call stack, and parameters, which are

orthogonal to the types of applications. Also, PoLPer did not have

any particular assumptions about the target applications. When a

new user is added into the system (e.g., adduser), which is another

case to change an environmental context, PoLPer requires to update
the model as well to handle a new user. Since a user ID is easily

recognizable in the rule sets, it is straightforward to extend data flow

check to use an ID template, therefore, including or excluding users.

Our future work on this ID generalization will further improve the

convenience and usability of PoLPer.

7 RELATEDWORK
In this section, we discuss the approaches related to PoLPer and how
PoLPer is differentiated from them. Table 9 provides a comparison

between PoLPer and other works that are most closely related.

The principle of least privilege [48] means enforcing minimal

privileges that allow the user/module to perform an intended role.

The principle of least privilege is mainly achieved by separating the

system into isolated compartments or using other techniques such

as setuid system calls [11], Linux capabilities [8]. Qmail [5] has a

software architecture that follows this principle (separating mod-

ules run into separate user IDs). Approaches such as JIGSAW [56],

WatchIT [50], program compartmentalization [21, 23], SMV [23],

SOAAP [21], Minion [30] follow this principle to reduce unneces-

sary privileges. PoLPer also follows this principle with a focus on

the setuid system calls. The necessary privilege is extracted from

the source code and dynamic training and enforced at run-time.

Several approaches [11, 17, 28] have investigated the status of

setuid system calls and identified their semantic inconsistency.

This problem occurred with human errors because they were in-

sufficiently documented and poorly designed. Authors proposed

more stable high-level APIs instead of low-level setuid system calls

[11, 17] or migration of setuid policies from user-space programs

to the kernel [28] as remedies.

Another line of work [19, 32, 38] models system call behavior

during run-time. These approaches only rely on run-time behavior,

unlike PoLPer. Additionally, they are based on process insensi-

tive context. Therefore their detection policies do not differentiate

10

Session 5: Access Control and Information Flow CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

218

Approaches Overhead PA KE CF DM NS NM NK PV DA SA Main Techniques

CFI [3, 39–42] 1∼15% ✗ ✓/✗ ✓ ✗ ✓/✗ ✗ ✓/✗ ✓ ✓ ✓ Analyze and enforce control flow integrity

DFI [4, 10, 52] 7∼103% ✗ ✓/✗ ✓/✗ ✓ ✓/✗ ✗ ✓/✗ ✓ ✓/✗ ✓ Analyze and enforce data flow integrity

Kruegel et al. [32] 0∼58% ✗ ✗1 ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ Analyze arguments of system call for detection

Feng et al. [19] 0∼250% ✗ ✗1 ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ Analyze call stack of system call for detection

Mutz et al. [38] 0∼100% ✗ ✗1 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ Analyze call stack and arguments of system call for detection

Setuid [11, 17] -
2 ✗ ✗3 -

4
-
4 ✓ ✓ ✓ -

4 ✗ ✗ Identify semantic inconsistency of priv. operations

Protego [28] 0∼7.4% ✗ ✓ -
5

-
5 ✗ ✗ ✗ -

5
- - Migrate setuid policies from user space to kernel

Seccomp [49] 2% ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ Filter system calls based on predefined rule

Linux Capabilities [8] -
2 ✗ ✓ ✗ ✗ ✓7 ✓7 ✗ ✓ ✗ ✗ Divide the power of superuser into pieces

PoLPer 0∼0.54% ✓ ✓ ✓ ✓ ✓6 ✓ ✓ ✓ ✓ ✓ Extract and enforce the least priv. in multi contexts

Table 9: Comparison of PoLPer and related approaches. PA: process-aware policy granularity, KE: kernel-space enforcement,
CF: control flow exploit detection, DM : Datamodification exploit detection, NS: No source code required, NM: Nomodification
on software, NK: Independent to kernel, interfaces and services, PV: Prevention of attacks, DA: Dynamic analysis, SA: Static
analysis, 1: Use a monitoring service or user level implementation without enforcement, 2: No evaluation on performance, 3:
only interfaces are presented for semantic correction, 4: These approaches do not detect attacks, 5: Removes setuid related
attacks with the cost of redesign of interfaces and software, 6: Higher accuracy if source code is available. 7: Linux capabilities
can be used as OS policy configuration without modifying or involving software logic.

distinct requirement of setuid calls in each process causing over-

approximated policies.

Policy enforcement approaches [45, 55, 57] create system call

execution policies through the inspection of system call properties.

These approaches are based on mandatory access control systems

such as AppArmor [44], Seccomp [49], and SELinux [51]. They pose

several limitations such as coarse-grained program level policies,

and non-trivial overhead. In contrast, PoLPer creates process con-
text sensitive profiles which help to reduce the number of policies

and thus lower overhead. PoLPer transparently restricts setuid
system calls using a comprehensive combination of process sensi-

tive execution contexts without any modification on the protected

software.

Code-reuse attacks, such as ROP [47], are advanced attack mech-

anisms that bypass conventional defense mechanisms, such as data

execution prevention (DEP) [37, 53]. The main goal of CFI [3] is

to prevent code-reuse attacks by restricting the execution of a pro-

gram to only follow the correct known control flow. Although the

conceptual design of CFI has been sound from its beginning, there

have been issues to be addressed in accuracy and efficient enforce-

ment of CFI in practice. Niu et al. [40, 42] achieve a high precision

of CFG leveraging both static analysis and dynamic points-to anal-

ysis. There have been highly practical CFI mechanisms based on

binary analysis and hardware-assisted control transfer monitor-

ing [54, 60, 61]. Another line of work aims to address detecting

ROP attacks [13, 43], while others focus on CFI challenges in C++

programs [6, 59]. Despite these research efforts, many others have

reported weaknesses of the existing CFI mechanisms [9, 14, 18].

Compared to CFI, PoLPer focuses on detecting process-aware multi-

ple context misuses on setuid calls. Regarding control flow, PoLPer
checks the backward function call level control flow using call

stack. While CFI focuses solely on the control flow of a program,

PoLPer can prevent data modification exploit that does not make

any change in the control flow by using multiple process-aware

contexts including data contexts and call contexts.

Since exploits corrupt both control data (e.g., function pointer,

jump targets, and return address) and non-control data (e.g., the

arguments of privilege operations) mitigations must protect both

angles. While CFI [3] and CPI [33] protect against the manipulation

of control data, they cannot protect against other data modifications.

With the rise of automatic synthesis of non-control data attacks [12,

24, 25, 27], data-flowmust be protected as well. Current fine-grained

solutions are either not yet practical because of coverage issues

(e.g., KENALI [52] is only designed for OS kernels) and overhead

issues (e.g., DFI [10]’s overhead is 104% since it handles all control

and non-control data manipulation).

For the detection and prevention of privilege operation attacks

(e.g., privilege escalation) based on the manipulation of control and

non-control data, practical data flow integrity checking solutions

are needed. PoLPer provides coarse-grained data context integrity

(both control and non-control) on the scope of setuid calls with
negligible overhead.

8 CONCLUSION
PoLPer systematically extracts only the required contexts of setuid
calls from programs to discover the distinct demand of privilege

operation of each process. PoLPer transparently enforces these

process-aware characteristics using a comprehensive combination

of process contexts so that unnecessary contexts of setuid calls are
tightly restricted in legacy software without any change. Our eval-

uation presents that PoLPer can prevent real-world exploits based

on state-of-the-art attack techniques manipulating data context or

control context of setuid system calls effectively and efficiently

with near zero overhead in the end-to-end performance in various

desktop and server programs.

ACKNOWLEDGMENTS
The first author worked on this project during an internship at NEC

Laboratories America, Princeton. We would like to thank the anony-

mous reviewers for their detailed and constructive comments. This

work was supported by NSF awards #1801601, #1513783, and ONR

award N00014-17-1-2513. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of our sponsors.

11

Session 5: Access Control and Information Flow CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

219

REFERENCES
[1] Online; accessed 22-Sept-2018. Bypassing non-executable memory, ASLR and

stack canaries on x86-64 Linux. https://www.antoniobarresi.com/security/

exploitdev/2014/05/03/64bitexploitation/.

[2] Online; accessed 22-Sept-2018. Defeating DEP with ROP. https://samsclass.info/

127/proj/rop.htm.

[3] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow

Integrity Principles, Implementations, and Applications. ACM Trans. Inf. Syst.
Secur.

[4] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel Castro.

2008. Preventing memory error exploits with WIT. In Proceedings of S&P’08.
[5] Daniel J Bernstein. 2007. Some thoughts on security after ten years of qmail 1.0.

In Proceedings of CSAW’07.
[6] Dimitar Bounov, Rami Gökhan Kici, and Sorin Lerner. 2016. Protecting C++

Dynamic Dispatch Through VTable Interleaving. In Proceedings of NDSS’16.
[7] Scott Brookes and Stephen Taylor. 2016. Containing a Confused Deputy on x86:

A Survey of Privilege Escalation Mitigation Techniques. International Journal of
Advanced Computer Science and Applications.

[8] Linux capabilities. Online; accessed 23-Sep-2018. http://man7.org/linux/

man-pages/man7/capabilities.7.html.

[9] Nicolas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.

Gross. 2015. Control-flow Bending: On the Effectiveness of Control-flow Integrity.

In Proceedings of SEC’15.
[10] Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing software by

enforcing data-flow integrity. In Proceedings of OSDI’06.
[11] Hao Chen, David Wagner, and Drew Dean. 2002. Setuid Demystified. In Proceed-

ings of SEC’02.
[12] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K Iyer.

2005. Non-Control-Data Attacks Are Realistic Threats. In Proceedings of SEC’05.
[13] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, and Huijie Robert Deng.

2014. ROPecker: A generic and practical approach for defending against rop

attacks. In Proceedings of NDSS’14.
[14] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco

Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.

2015. Losing Control: On the Effectiveness of Control-Flow Integrity Under Stack

Attacks. In Proceedings of CCS’15.
[15] Thurston HY Dang, Petros Maniatis, and David Wagner. 2015. The performance

cost of shadow stacks and stack canaries. In Proceedings of ASIACCS’15.
[16] Shellcodes database for study cases. Online; accessed 23-Sep-2018. http://

shell-storm.org/shellcode/.

[17] Mark S Dittmer and Mahesh V Tripunitara. 2014. The UNIX process identity

crisis: A standards-driven approach to setuid. In Proceedings of CCS’14.
[18] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,

Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control Jujutsu: On the

Weaknesses of Fine-Grained Control Flow Integrity. In Proceedings of CCS’15.
[19] Henry Hanping Feng, Oleg M Kolesnikov, Prahlad Fogla, Wenke Lee, and Weibo

Gong. 2003. Anomaly detection using call stack information. In Proceedings of
S&P’03.

[20] Yangchun Fu, Junghwan Rhee, Zhiqiang Lin, Zhichun Li, Hui Zhang, and Guofei

Jiang. 2016. Detecting Stack Layout Corruptions with Robust Stack Unwinding.

In Proceedings of RAID’16.
[21] Khilan Gudka, Robert N.M. Watson, Jonathan Anderson, David Chis nall, Brooks

Davis, Ben Laurie, Ilias Marinos, Pe ter G. Neumann, and Alex Richardson. 2015.

Clean Application Compartmentalization with SOAAP. In Proceedings of CCS’15.
[22] Norm Hardy. 1988. The Confused Deputy:(or why capabilities might have been

invented). In Proceedings of SIGOPS’88.
[23] terry ching-hsiang Hsu, kevin hoffman, patrick eugster, and mathias payer. 2016.

enforcing least privilege memory views for multithreaded applications. In pro-
ceedings of CCS’16.

[24] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai

Liang. 2015. Automatic Generation of Data-Oriented Exploits.. In Proceedings of
SEC’15.

[25] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,

and Zhenkai Liang. 2016. Data-oriented programming: On the expressiveness of

non-control data attacks. In Proceedings of S&P’16.
[26] Intel. Online; accessed 23-Sep-2018. Control-flow enforcement technology

(CET) preview. https://software.intel.com/sites/default/files/managed/4d/2a/

control-flow-enforcement-technology-preview.pdf.

[27] Kyriakos Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. [n. d.].

Block Oriented Programming: Automating Data-Only Attacks. In Proceedings of
CCS’18.

[28] Bhushan Jain, Chia-Che Tsai, Jitin John, and Donald E Porter. 2014. Practical

Techniques to Obviate Setuid-to-root Binaries. In Proceedings of EuroSys’14.
[29] Jim Keniston. Online; accessed 23-Sep-2018. Kernel Probes. https://elixir.

free-electrons.com/linux/v4.0/source/Documentation/kprobes.txt.

[30] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, Byoungyoung

Lee, Xiangyu Zhang, and Dongyan Xu. 2018. Securing Real-Time Microcon-

troller Systems through Customized Memory View Switching. In Proceedings of
NDSS’18.

[31] Gene H Kim and Eugene H Spafford. 1994. The design and implementation of

tripwire: A file system integrity checker. In Proceedings of CCS’94.
[32] Christopher Kruegel, Darren Mutz, Fredrik Valeur, and Giovanni Vigna. 2003. On

the detection of anomalous system call arguments. In Proceedings of ESORICS’03.
[33] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar,

and Dawn Song. 2014. Code-Pointer Integrity. In Proceedings of OSDI’14.
[34] Long Le. 2010. Payload Already Inside: Data Reuse for ROP Exploits. (2010).

[35] LLVM. Online; accessed 23-Sep-2018. The LLVM Compiler Infrastructure Project.

http://llvm.org/.

[36] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2016. UniSan: Proactive

kernel memory initialization to eliminate data leakages. In Proceedings of CCS’16.
[37] Microsoft. Online; accessed 23-Sep-2018. Data Execution Prevention (DEP). https:

//msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85).aspx.

[38] Darren Mutz, William Robertson, Giovanni Vigna, and Richard Kemmerer. 2007.

Exploiting execution context for the detection of anomalous system calls. In

Proceedings of RAID’07.
[39] Ben Niu and Gang Tan. 2013. Monitor Integrity Protection with Space Efficiency

and Separate Compilation. In Proceedings of CCS’13.
[40] Ben Niu and Gang Tan. 2014. Modular Control-flow Integrity. In Proceedings of

PLDI’14.
[41] Ben Niu and Gang Tan. 2014. RockJIT: Securing Just-In-Time Compilation Using

Modular Control-Flow Integrity. In Proceedings of CCS’14.
[42] Ben Niu and Gang Tan. 2015. Per-input control-flow integrity. In Proceedings of

CCS’15.
[43] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. 2013. Trans-

parent ROP Exploit Mitigation Using Indirect Branch Tracing. In Proceedings of
SEC’13.

[44] AppArmor Project. Online; accessed 23-Sep-2018. http://wiki.apparmor.net/index.

php/Main_Page.

[45] Niels Provos. 2003. Improving Host Security with System Call Policies.. In

Proceedings of SEC’03.
[46] Mohammed Rangwala, Ping Zhang, Xukai Zou, and Feng Li. 2014. A taxonomy

of privilege escalation attacks in android applications. International Journal of
Security and Networks (2014).

[47] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-

Oriented Programming: Systems, Languages, and Applications. ACM Trans.
Inf. Syst. Secur. 15, 1, Article 2 (March 2012), 34 pages. https://doi.org/10.1145/

2133375.2133377

[48] Jerome H. Saltzer. 1974. Protection and the Control of Information Sharing in

Multics. Comm. ACM.

[49] Seccomp. Online; accessed 23-Sep-2018. SECure COMPuting with filters. https:

//www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt.

[50] Noam Shalev, Idit Keidar, Yaron Weinsberg, Yosef Moatti, and Elad Ben-Yehuda.

2017. WatchIT: Who Watches Your IT Guy?. In Proceedings of SOSP’17.
[51] Stephen Smalley, Chris Vance, and Wayne Salamon. 2001. Implementing SELinux

as a Linux security module. NAI Labs Report.
[52] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William Harris, Taesoo Kim, and

Wenke Lee. 2016. Enforcing Kernel Security Invariants with Data Flow Integrity.

In Proceedings of NDSS’16.
[53] PaX Team. Online; accessed 23-Sep-2018. Pax: the Linux kernel patch for least

privilege protection. https://en.wikipedia.org/wiki/PaX.

[54] Victor Van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc,

Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical Context-

Sensitive CFI. In Proceedings of CCS’15.
[55] Jeffrey A Vaughan and Andrew D Hilton. 2010. Paladin: Helping Programs Help

Themselves with Internal System Call Interposition.

[56] Hayawardh Vijayakumar, Xinyang Ge, Mathias Payer, and Trent Jaeger. 2014.

JIGSAW: Protecting Resource Access by Inferring Programmer Expectations. In

Proceedings of SEC’14.
[57] David Wagner and R Dean. 2001. Intrusion detection via static analysis. In

Proceedings of S&P’01.
[58] M. Zalewski. Online; accessed 23-Sep-2018. American Fuzzy Lop. http://lcamtuf.

coredump.cx/afl/.

[59] Chao Zhang, Dawn Xiaodong Song, Scott A. Carr, Mathias Payer, Tongxin Li,

Yu Ding, and Chengyu Song. 2016. VTrust: Regaining Trust on Virtual Calls. In

Proceedings of NDSS’16.
[60] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-

Camant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity and

Randomization for Binary Executables. In Proceedings of S&P’13.
[61] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries. In

Proceedings of SEC’13.

12

Session 5: Access Control and Information Flow CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

220

https://www.antoniobarresi.com/security/exploitdev/2014/05/03/64bitexploitation/
https://www.antoniobarresi.com/security/exploitdev/2014/05/03/64bitexploitation/
https://samsclass.info/127/proj/rop.htm
https://samsclass.info/127/proj/rop.htm
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://shell-storm.org/shellcode/
http://shell-storm.org/shellcode/
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://elixir.free-electrons.com/linux/v4.0/source/Documentation/kprobes.txt
https://elixir.free-electrons.com/linux/v4.0/source/Documentation/kprobes.txt
http://llvm.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85).aspx
http://wiki.apparmor.net/index.php/Main_Page
http://wiki.apparmor.net/index.php/Main_Page
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1145/2133375.2133377
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://en.wikipedia.org/wiki/PaX
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Threat Model
	3 Design of PoLPer
	3.1 Architecture
	3.2 Extraction of Process Hierarchy Context
	3.3 Extraction of Process Data Context
	3.4 Extraction of Process Call Context
	3.5 Run-time Enforcement of Process Contexts

	4 Implementation
	5 Evaluation
	5.1 Detection of Real-world Security Exploits
	5.2 Extraction of Process Contexts
	5.3 Performance Impact
	5.4 Case Study: A Real-world Data-oriented Attack
	5.5 Case Study: Process-aware Detection of a Data-oriented Attack

	6 Discussion
	7 Related work
	8 Conclusion
	References

