USCOPE: A SCALABLE UNIFIED TRACER
FROM KERNEL TO USER SPACE

Junghwan Rhee, Hui Zhang, Nipun Arora,
Guofei Jiang, Kenji Yoshihira

NEC Laboratories America

NEC Lahoratories
America
Relentiess passion for innovation

www.nec-labs.com

Motivation
- Complex IT services face diverse

functional and non-functional issues S—
due to complexity of software and e e e kil B8
usage of underlying components. i i e Nl

- OS kernel event tracing is a
convenient method to monitor and
debug system operations without
hard dependency on application
layers (e.g., Libraries, program
binaries).

- Example: System call trace

- However, OS events can be
triggered by diverse programs and
code. Therefore there is semantic
gap to understand application
program behavior from OS events.

Uscope: A Scalable Unified Tracer from Kernel to User Space

Unified Tracing

- Trace logs across the boundary of kernel and user space
- Examples: Dtrace, Windows ETW, System Tap

- Two types of Unified Tracing

o App B App A App B App C
§ A [main,\] [main]
A IE ? :

% U % :

> Prg%re Lib aryi%\ibra@] Library;

T —— :

g B syscall . -

¥ (a) Type 1 Unified Tracing (b2 Type 2 Unified Tracing

(User space to Kernel) Kernel to User space)

Trigger Traced Target
Type 1 User code Trace the execution of known user code
Type 2 Kernel code Trace unknown user code triggering kernel

code

Uscope: A Scalable Unified Tracer from Kernel to User Space

Type 2 Unified Tracing

- Service problems can be caused from
any program/layers. Type 2 unified
tracers can cover such unknown cases.

- Atypically used technique to collect user App A

main :

space code information is stack walking.
Y
Library]

- Tracer finds the user process stack in the
current context and scan stack frames

Library§ Library}

from the stack pointer address. syscall . o
T 2 Unified Traci
- Examples (Kernel to User space]
- Ustack of Dtrace, Stackwalking of Microsoft
ETW

- These solutions have been generally
used for debugging scenarios. How we
can lower overhead?

Uscope: A Scalable Unified Tracer from Kernel to User Space

Challenges : Tracing Focus

- Tracing all programs?

Figure: A hierarchy of live processes in an idle desktop machine

- There are numerous processes in typical desktop and server
systems at runtime for various purposes (e.g., multitasking,
administration, accounting, updating software, users’ daemons).

- Unless the user does not know which program to diagnose, tracing
all processes is not ideal.

Uscope: A Scalable Unified Tracer from Kernel to User Space

Challenges : Tracing Focus

- Tracing an application software?

Child of the Apache Controller /435
becomes the Apache daemon. '”‘*'

apacneD Apache Controller
forks a child

apachectl

in'il/
daemonized/Tork
Apache daemon forks children hipd
on demand. fork " Tork /Tork florklfork \ fork fork ~~._fork

Workyrs on Demand
4671 4672 4673
httpd hitpd httpd

- Programs create and kill many sub processes dynamically.
- Some processes change their identity (execve system calls).

- How to systematically track all processes from their start? (instead
of giving PIDs to tracers)

Uscope: A Scalable Unified Tracer from Kernel to User Space

Challenges : Tracing Focus

- Tracing the whole stack?

- Programs may have deep stacks. ECLIPSE project reported that
the collected stack trace ranged from 1 ~ 1024 stack frames.

- A stack includes function call information of multiple software layers
(programs, libraries, middleware, and kernel etc.)

- Not every stack layer may be in users’ interest.

LibC

Libraries

Program

Uscope: A Scalable Unified Tracer from Kernel to User Space

Uscope: Systematic Unified Tracer

- Flexible and configurable tracing scopes
- Efficient per-application tracing
- Systematic tracking of dynamic processes
- A highly configurable focus within the call stack

Program

Uscope: A Scalable Unified Tracer from Kernel to User Space

Uscope Architecture

User raceesy
Space App A 1 I:I App C
Unified Trace

05 Flexible ~ _ Per-App
Kernel || Stack Walking Tracing w

1)
Kernel Tracing User Tracing Tracing

Target Target Mode

- Input:
1. Kernel Tracing Target : the kernel events that generate log events
2. User Tracing Target : the application software to be traced
3. Tracing Mode : specification on the call stack focus to be traced

- Output:
- Unified Trace for the user tracing target

Uscope: A Scalable Unified Tracer from Kernel to User Space

Per-Application Tracing Logic

Kernel _9@ Is it a Kernel \@ Get the
Event Tracing Target? “1 current PID
Trace ..pssidiidiiiisilll lo i,
Map 5{’:""""’.::""'1““‘““'.5"~',: """"""""" AT REEEEEN \@Dynamic
PD | Name P!FR | Add anew | | Remove a Invalidate | x— Process
| process process CRLT / Management
- S PN /I I_
101 A | PTR| = > exit execyg, o i v
e fark T, AN e T ODTEM
102 A | PR O " SECRLT via .
R K 6) pTR Flexible
103 B ouT Stack
104 2 (Rew) NUH |_>@Set up > Return alking
<:-*1 CRLT/PTR

- This diagram shows the logic how Uscope performs per-application
tracing and systematic tracking of dynamic processes.

- Trace map maintains the sets of processes in three states: (1)
unknown, (2) to be traced, and (3) not to be traced.

- Kernel events making dynamic changes of processes (e.g., fork, exit,
execve) trigger corresponding changes on the trace map.

Uscope: A Scalable Unified Tracer from Kernel to User Space

Flexible Call Stack Scope

Call stack Mode 1 Mode 2 Mode 3 Mode 4 _
adg;ggg" (App) (App All) (Library) (All) Unrecorded call site

........
. L]
* b2

. *
Ll .

v
Cy
Recorded call sites during stack walking

- Uscope provides flexible call stack scopes in tracing.
- Maximum budge S. Further fine control is available.

Recorded call site

-

Stack walking

Binary config In-Binary config
Mode 1 | App binary The last stack frame
Mode 2 | App binary All stack frames

Mode 3 | All binaries, libraries | Last stack frames
Mode 4 | All binaries, libraries | All stack frames

Uscope: A Scalable Unified Tracer from Kernel to User Space

Implementation

- Tracer
- Implemented by extending SystemTap.
- SystemTap hooks system calls to generate log events.
- Trace map and tracing logic is implemented as a kernel module.
- Redhat Enterprise Linux 5 is supported.
- Input:
1. Kernel Tracing Target : System call events
2. User Tracing Target : Apache webserver (Server workload),
MySQL database (Server workload), Nbench (computation)
- Uscope can be dynamically attached and detached to the
kernel at runtime. When it is detached, there is no

overhead.

Uscope: A Scalable Unified Tracer from Kernel to User Space

Runtime Overhead

[

o
O
vl

A
o

09 -
0.85
0.8
0.75
0.7 4

.

Normalized Index

Apache MySQL NBench
B Native BStap Uscope 1-1 [BUscope2-3 BUscope 2-5 Uscope 3-5

- Workload
- Apache : Apache HTTP Benchmark tool (ab), 100 concurrency, 10"6 requests

- MySQL : MySQL Benchmark suite (alter-table, ATIS, big-tables, connect,
create, insert, select, transactions, and wisconsin)

- Nbench : Linux/Unix of BYTE’s Native Mode Benchmarks (verison 2.2.3).

7 13

“Memory Index”, “Integer Index”, and “FP Index” are used.
- Tracing Modes :
1. Mode 1 : application call stack layer, the last stack frame
2. Mode 2 : application call stack layer, 3 or 5 last stack frames
3. Mode 3 : all layers, the last stack frames up to 5

- Less than 6% overhead in three benchmarking cases

Uscope: A Scalable Unified Tracer from Kernel to User Space

Case Study Application 1

- Testbed

- Three tier PetStore system
(Apache, Jboss, MySQL)

¢ Sy m p t O m g 8e+06 . (IR e Qum DOEE P R lNlo;mlall Elxelcbti'oﬁ | P e W we |
- Web requests failed. D 76406 | Abnormal Execution
- Tracing: Mode 2 (S=3) T ees06 (T0000gS EECocCo &
- Dual Space Analysis E je*g: %
)) o 4de : 00
- X axis shows different types of g X +06<?®C © 0 OO GO
system calls and Y axis shows S **' [. ¢
application code (i.e., triggers). 8 2%y o - O
- Unique events in normal case g '®*%7 R RO o
- Read: my read £ Oocmﬁ~6=xo.o5x . mt;‘a_._gm‘-'m;'oxxw
handle connections_ socket S 28 “"”Qgﬁ o0 §
x
- More.. 53 S
o S

Unigue events in abnormal case
- Stat: archive discover

=> Problem in accessing the
database file

Uscope: A Scalable Unified Tracer from Kernel to User Space

Case Study Application 2

Testbed

Apache Webserver

Symptom

Concurrency error that threads are
in a deadlock condition (Case
number: Apache #42031)
Tracing: Mode 2 (S=5)
Call Stack Analysis
Call stacks on futex system calls
are captured and analyzed.
Worker Thread

apr_thread mutex call (a
wrapper of pthread mutex call)

Listener Thread

apr_thread cond wait (a
wrapper of pthread cond wait)

=> Deadlock conditions are

identified.

Sys Calls

Program

User code context

Workers

Listener

? oy, deadlock

-

CLOCK (timeout)

UNLOCK(timeout)

LOCK (idlers)
SIGNAL (waits)

UNLOCK(idlers)

LOCK (timeout)

LOCK (idlers)

COND_WAIT

aits, idlers)

UNLOCK (idlers)

UNLOCK(timeout)

Conclusion

- Uscope provides efficient type 2 unified tracing for kernel
and unknown user code.

- Uscope provides per-application tracing, systematic
tracking of dynamic processes, and flexible specification
on call stack scopes to be traced.

- Our prototype has 6% overhead compared to native
execution in several benchmarks.

- Also we showed two case studies illustrating how unified
tracers can be used for diagnosing service systems.

Uscope: A Scalable Unified Tracer from Kernel to User Space

Thank you

NEC Lahoratories
America

Relentless passion for innovation

www.nec-labs.com

Uscope: A Scalable Unified Tracer from Kernel to User Space

