
USCOPE: A SCALABLE UNIFIED TRACER
FROM KERNEL TO USER SPACE

Junghwan Rhee, Hui Zhang, Nipun Arora,

Guofei Jiang, Kenji Yoshihira

NEC Laboratories America

www.nec-labs.com

Uscope: A Scalable Unified Tracer from Kernel to User Space

Motivation

• Complex IT services face diverse
functional and non-functional issues
due to complexity of software and
usage of underlying components.

• OS kernel event tracing is a
convenient method to monitor and
debug system operations without
hard dependency on application
layers (e.g., Libraries, program
binaries).
• Example: System call trace

• However, OS events can be
triggered by diverse programs and
code. Therefore there is semantic
gap to understand application
program behavior from OS events.

2

Performance

Errors

Security

Uscope: A Scalable Unified Tracer from Kernel to User Space

Unified Tracing

• Trace logs across the boundary of kernel and user space

• Examples: Dtrace, Windows ETW, System Tap

• Two types of Unified Tracing

3

Trigger Traced Target

Type 1 User code Trace the execution of known user code

Type 2 Kernel code Trace unknown user code triggering kernel

code

K
er

n
el

(a) Type 1 Unified Tracing
(User space to Kernel)

(b) Type 2 Unified Tracing
(Kernel to User space)

U
se

r
Sp

ac
e

…

App
A

App
C fB,P

App B App A App C App B

?
?

?
fA,1

main

syscall

main

User
Probe Library

fB,1

main

Library

… …

fC,1

main

Library

Uscope: A Scalable Unified Tracer from Kernel to User Space

Type 2 Unified Tracing

• Service problems can be caused from

any program/layers. Type 2 unified

tracers can cover such unknown cases.

• A typically used technique to collect user

space code information is stack walking.

• Tracer finds the user process stack in the

current context and scan stack frames

from the stack pointer address.

• Examples

• Ustack of Dtrace, Stackwalking of Microsoft

ETW

• These solutions have been generally

used for debugging scenarios. How we

can lower overhead?

4

Type 2 Unified Tracing
(Kernel to User space)

…

App A App C App B

?
?

?
fA,1

syscall

main

Library

fB,1

main

Library

… …

fC,1

main

Library

Uscope: A Scalable Unified Tracer from Kernel to User Space

Challenges : Tracing Focus

• Tracing all programs?

• There are numerous processes in typical desktop and server

systems at runtime for various purposes (e.g., multitasking,

administration, accounting, updating software, users’ daemons).

• Unless the user does not know which program to diagnose, tracing

all processes is not ideal.

5

Figure: A hierarchy of live processes in an idle desktop machine

Uscope: A Scalable Unified Tracer from Kernel to User Space

Challenges : Tracing Focus

• Tracing an application software?

• Programs create and kill many sub processes dynamically.

• Some processes change their identity (execve system calls).

• How to systematically track all processes from their start? (instead
of giving PIDs to tracers)

6

Apache Controller

forks a child

Child of the Apache Controller

becomes the Apache daemon.

Apache daemon forks children

on demand.

Uscope: A Scalable Unified Tracer from Kernel to User Space

Challenges : Tracing Focus

• Tracing the whole stack?

• Programs may have deep stacks. ECLIPSE project reported that

the collected stack trace ranged from 1 ~ 1024 stack frames.

• A stack includes function call information of multiple software layers

(programs, libraries, middleware, and kernel etc.)

• Not every stack layer may be in users’ interest.

7

LibC

Libraries

Program

Uscope: A Scalable Unified Tracer from Kernel to User Space

Uscope: Systematic Unified Tracer

• Flexible and configurable tracing scopes

• Efficient per-application tracing

• Systematic tracking of dynamic processes

• A highly configurable focus within the call stack

8

LibC

Libraries

Program

Uscope: A Scalable Unified Tracer from Kernel to User Space

Uscope Architecture

• Input:

1. Kernel Tracing Target : the kernel events that generate log events

2. User Tracing Target : the application software to be traced

3. Tracing Mode : specification on the call stack focus to be traced

• Output:

• Unified Trace for the user tracing target

9

Kernel Tracing
Target

OS Kernel

App B

Unified Trace

User Tracing
Target

Tracing
Mode

OS
Kernel

Per-App
Tracing

Flexible
Stack Walking

User
Space App A App C

App B
Process

1

Uscope: A Scalable Unified Tracer from Kernel to User Space

Per-Application Tracing Logic

• This diagram shows the logic how Uscope performs per-application
tracing and systematic tracking of dynamic processes.

• Trace map maintains the sets of processes in three states: (1)
unknown, (2) to be traced, and (3) not to be traced.

• Kernel events making dynamic changes of processes (e.g., fork, exit,
execve) trigger corresponding changes on the trace map.

10

PID Name PTR

…

…

Trace
Map 3

Get the
current PID

2 Is it a Kernel
Tracing Target?

1

Set up
CRLT/PTR

4

exit

Add a new
process

Remove a
process

Invalidate
CRLT

fork
execve

execve

Kernel
Event

Dynamic
Process

Management
Layer

5

Obtain
CRLT via

PTR
Flexible

Stack
Walking

6

7
Return

8 104 ? (New) Null 104 A PTR

101

102

103

A
A

B

PTR

OUT

PTR

Uscope: A Scalable Unified Tracer from Kernel to User Space

Flexible Call Stack Scope

• Uscope provides flexible call stack scopes in tracing.

• Maximum budge S. Further fine control is available.

11

Call stack
during

a Syscall

Syscall

…

Recorded call sites during stack walking

Recorded call site

Unrecorded call site

Ck,1

Ck,2 RK
Ck,nk

…

Mode 4
(All)

C1,1
C1,2

Ck,1
Ck,2

…
C1,n1

Ck,nk

…

…

Mode 3
(Library)

C1,1
C1,2

Ck,1
Ck,2

…
C1,n1

Ck,nk

…

…

Mode 1
(App)

C1,1
C1,2

C1,n1

…

Ck,1
Ck,2

…

Ck,nk

…

Mode 2
(App All)

C1,1
C1,2

C1,n1

…

Ck,1
Ck,2

…

Ck,nk

…

C1,1

C1,2 R1
C1,n1

…

Binary config In-Binary config

Mode 1 App binary The last stack frame

Mode 2 App binary All stack frames

Mode 3 All binaries, libraries Last stack frames

Mode 4 All binaries, libraries All stack frames

Stack walking

Uscope: A Scalable Unified Tracer from Kernel to User Space

Implementation

• Tracer

• Implemented by extending SystemTap.

• SystemTap hooks system calls to generate log events.

• Trace map and tracing logic is implemented as a kernel module.

• Redhat Enterprise Linux 5 is supported.

• Input:

1. Kernel Tracing Target : System call events

2. User Tracing Target : Apache webserver (Server workload),

MySQL database (Server workload), Nbench (computation)

• Uscope can be dynamically attached and detached to the

kernel at runtime. When it is detached, there is no

overhead.

12

Uscope: A Scalable Unified Tracer from Kernel to User Space

Runtime Overhead

• Workload
• Apache : Apache HTTP Benchmark tool (ab), 100 concurrency, 10^6 requests

• MySQL : MySQL Benchmark suite (alter-table, ATIS, big-tables, connect,
create, insert, select, transactions, and wisconsin)

• Nbench : Linux/Unix of BYTE’s Native Mode Benchmarks (verison 2.2.3).
“Memory Index”, “Integer Index”, and “FP Index” are used.

• Tracing Modes :
1. Mode 1 : application call stack layer, the last stack frame

2. Mode 2 : application call stack layer, 3 or 5 last stack frames

3. Mode 3 : all layers, the last stack frames up to 5

• Less than 6% overhead in three benchmarking cases

13

Uscope: A Scalable Unified Tracer from Kernel to User Space

Case Study Application 1

• Testbed
• Three tier PetStore system

(Apache, Jboss, MySQL)

• Symptom
• Web requests failed.

• Tracing: Mode 2 (S=3)

• Dual Space Analysis
• X axis shows different types of

system calls and Y axis shows
application code (i.e., triggers).

• Unique events in normal case
• Read: my_read

• Accept:
handle_connections_socket

• More..

• Unique events in abnormal case
• Stat: archive_discover

• => Problem in accessing the
database file

14

Uscope: A Scalable Unified Tracer from Kernel to User Space

Case Study Application 2

• Testbed
• Apache Webserver

• Symptom
• Concurrency error that threads are

in a deadlock condition (Case
number: Apache #42031)

• Tracing: Mode 2 (S=5)

• Call Stack Analysis
• Call stacks on futex system calls

are captured and analyzed.

• Worker Thread
• apr_thread_mutex_call (a

wrapper of pthread_mutex_call)

• Listener Thread
• apr_thread_cond_wait (a

wrapper of pthread_cond_wait)

• => Deadlock conditions are
identified.

15

LOCK (timeout)
. . .

UNLOCK(timeout)
. . .

LOCK (idlers)
. . .

SIGNAL (waits)
. . .

UNLOCK(idlers)
. . .

LOCK (timeout)
. . .

LOCK (idlers)
. . .

COND_WAIT
(waits, idlers)

. . .
UNLOCK (idlers)

. . .
UNLOCK(timeout)

Sy
s

C
al

ls

. . .
futex

. . .
futex

Listener Workers

P
ro

gr
am

U

se
r

co
d

e
co

n
te

xt

? ?

deadlock

deadlock

Uscope: A Scalable Unified Tracer from Kernel to User Space

Conclusion

• Uscope provides efficient type 2 unified tracing for kernel

and unknown user code.

• Uscope provides per-application tracing, systematic

tracking of dynamic processes, and flexible specification

on call stack scopes to be traced.

• Our prototype has 6% overhead compared to native

execution in several benchmarks.

• Also we showed two case studies illustrating how unified

tracers can be used for diagnosing service systems.

16

Uscope: A Scalable Unified Tracer from Kernel to User Space

Thank you

17

www.nec-labs.com

