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Abstract—The thin-client computing model has been recently
regaining popularity in a new form known as the virtual desktop.
That is where the desktop is hosted on a virtualized platform.
Even though the interest in this computing paradigm is broad
there are relatively few tools and methods for benchmarking
virtual client infrastructures. We believe that developing such
tools and approaches is crucial for the future success of virtual
client deployments and also for objective evaluation of existing
and new algorithms, communication protocols, and technologies.

We present DeskBench, a virtual desktop benchmarking tool,
that allows for fast and easy creation of benchmarks by simple
recording of the user’s activity. It also allows for replaying the
recorded actions in a synchronized manner at maximum possible
speeds without compromising the correctness of the replay. The
proposed approach relies only on the basic primitives of mouse
and keyboard events as well as screen region updates which
are common in window manager systems. We have implemented
a prototype of the system and also conducted a series of
experiments measuring responsiveness of virtual machine based
desktops under various load conditions and network latencies.
The experiments illustrate the flexibility and accuracy of the
proposed method and also give some interesting insights into the
scalability of virtual machine based desktops.

I. INTRODUCTION

The way users interact with applications has gone through
several phases of development over the last few decades. When
computing systems first adopted interactive user input/output
devices the users interacted with their applications using text
terminals connected to central computers, a good example
being the IBM 3270 text terminal [5]. An advent and pop-
ularization of personal computers in the early 1980s marked
the beginning of desktop computing as we know it today. In
this contemporary model the execution of the operating system
and applications happens on the end user device itself. The
recent years, however, have witnessed reinvigorated interest
in the centralization of end user computing. Technologies
such as Citrix [4], Windows Terminal Services [8], or most
recently virtual machine technology such as Kernel Virtual
Machines [1], Xen [19], or VMWare ESX [10] are on the
fast path to change the desktop computing landscape back
to the model of a terminal connected to a central server.
Figure 1 illustrates the virtual desktop model. End-user devices
consist of a monitor, keyboard, mouse, and disk-less “thin-
client” computer. The execution of the desktop operating
system as well as applications takes place on remote servers,
either within dedicated virtual machines or shared services
sessions. This recent transition has been enabled by several
developments of underlying technologies. The first one is
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Fig. 1. Overview of virtual desktop architecture. Users access their desktops
and applications using “thin-client” devices which relay only the keyboard
and mouse events and screen updates over the local or wide-area network.

ubiquitous high-speed networking access that allows effective
responsiveness even at significant distances. The throughput of
connections is high with fiber-optic cabling for even the “last-
mile” connections to private homes and small offices. Even
though basic propagation latency will remain an obstacle for
long distance desktop usage the connections of up to a few
hundred miles are sufficiently responsive to allow for a smooth
working experience. The second important advancement is
the virtualization technology. It decouples users from physical
resources thus making the management of the infrastructure
much more flexible and arguably more cost-effective. Virtu-
alization can be applied at both the application level (e.g.,
[12]) and the operating system level (e.g., [1], [19], [10]). The
latter makes it possible to run multiple instances of desktop
operating system on a single physical server while maintaining
full isolation and security.

Desktop virtualization, while offering many advantages, is
still a new and emerging technology with many research
challenges. One such challenge is the efficient and flexible
benchmarking of virtual client systems. This benchmarking
is crucial for capacity planning of virtual desktop deploy-
ments, testing and comparing the performance of hardware
and software components, and also for validating and eval-
uating algorithms and protocols. There are a large number
of established benchmarks both for servers and traditional
desktops. The prominent example is the suite of database
and transaction processing benchmarks defined by Transaction
Processing Performance Council [9]. It contains a specified
set of applications, database schema, data and programs that
can be used to exercise the system at its full capacity and at
the same time precisely measure transaction throughput and
latency.

We believe it is important to develop a similar level of



maturity in testing and performance benchmarking of virtual
desktop systems. However, it is a much more challenging task
than traditional desktop or server benchmarking. There are
three main reasons why this is the case.

First, replaying a sequence of user actions at a high speed
(which is required to test the systems performance under high
load conditions) is difficult. Before replaying the next action
in a sequence the benchmarking program has to make sure that
the effects of the prior action have been properly reflected so
that the state of the system is correct for invocation of the next
action. An example of this situation is a benchmark consisting
of three actions: opening an editor window, typing a letter in
this window, and closing the window. Observe, that replaying
the action of typing a letter can be initiated only after the
window is fully opened. If it is not the case, not only will the
measured response time of the action be incorrectly computed
but also the benchmark playback can enter an inconsistent state
with the keystroke representing the letter being directed to
the desktop rather than the editor window. This situation gets
worse when the system operates under high load conditions
because the delay between the completion of actions can
stretch significantly. Yet this is exactly the scenario which we
want to benchmark.

Second, virtual workstation performance is considerably
more difficult to define than that of a database server, ap-
plication server, or traditional desktop. This is because we
are interested not only in the timing of events, but also in
the quality of the display updates that the user perceives.
Some remote access protocols, such as VNC [18], RDP [6],
or ICA [17], may drop screen updates that do not arrive in
time to be played back, thus even though the timing of the
action’s execution is acceptable, the resulting output quality is
not. Similar problems affect the audio quality.

Third, most protocols used by virtual workstations to com-
municate with the end-user devices are either proprietary or at
best open but with very little documentation. Thus engineering
a benchmarking system that is applicable to a variety of
protocols and applications is a challenge.

We present DeskBench, a flexible and accurate desktop bench-
marking system capable of replaying and timing previously
recorded user actions. The novelty lies in using only the
basic primitives of keyboard and mouse events and frame
buffer region updates to record and time the replay of user
actions with arbitrary speed. The tool works in two phases:
recording of user actions and replaying them against a test
system. The recording of user actions stores the keyboard
and mouse events together with inter-arrival time information.
Moreover, at important points of the execution which are
required to synchronize the replay (such as the moment of
opening the editor window in the example described above)
the user recording the benchmark can mark the current screen
state as a synchronization element. The synchronization el-
ement represents the state of the desktop’s screen image at
that instance. During the replaying phase the keyboard and
mouse events are sent to the desktop application. In order to

deal with the replay synchronization problem the subsequent
mouse and keyboard events are appropriately delayed until
the state of the screen reaches the expected synchronization
point. The decision whether the screen is in an expected
state can be either fully deterministic or “fuzzy” based on
the image similarity metrics we have developed. We believe
that DeskBench has the following advantages over the other
approaches described in the literature:

• The recording of user actions is made easy by having
the user simply perform the actions he would normally
do and only marking (with a simple keypress) the
synchronization points at instances when the replaying
sequence needs to be (potentially) delayed to maintain
synchronization.

• Replaying can be done at arbitrary speeds because of
the self-synchronizing mechanism being based on actual
screen state. Thus the system can be used not only to
measure the responsiveness of an almost idle system but
also to generate high load. Further, the responsiveness
measurements are accurate and account for the total time
between the first request and the last screen element
update.

• During the recording and replaying of the user actions
we only use basic window system primitives (keyboard,
mouse, and screen updates) thus DeskBench can be
implemented at the windows manager level with no
application-level modifications. This makes our approach
generic and applicable to wide variety of test scenarios.

Probably the closest work to ours is the VNCPlay [20]
which captures and replays keyboard and mouse events within
RealVNC player [18]. Our approach differs by allowing for
more general artifacts (covering the whole screen) as well
as provides for “fuzzy” matching making it more robust
in adapting to not fully deterministic desktops. Moreover,
DeskBench is application and protocol agnostic because it can
be implemented within the window manager library. Another
work close to ours is Slow Motion Benchmarking [13] which
captures and replays the user actions at the network layer. It is
also generic in a sense of being application agnostic. However,
our approach allows replaying the actions at maximum speeds
and is not restricted to slow motion. Thus DeskBench can be
used to simulate high levels of load using the same actions that
are used to time the responsiveness of the system. Moreover,
it is easy to create large libraries of user actions, we refer
to as artifacts, by simply recording user’s activity. Broader
discussion of how our work compares to other approaches
(including window manager API scripting) can be found in
Section IV.

Roadmap
The remainder of this paper is organized as follows: Sec-

tion II presents the DeskBench approach and describes the
prototype implementation. Section III relates the results of the
evaluation of the tool as well as insights into the scalability
of virtual machine based virtual desktop systems. Section IV
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Fig. 2. DeskBench architecture. The functionality of the system can be
implemented within the window manager software or as an independent layer
between the application and the window manager library (as a shim). The
primitives that need to be intercepted and injected are common throughout
all major window managers both the open source and proprietary.

discusses the related work. Finally, Section V concludes and
outlines our future research plans.

II. DESKTOP BENCHMARKING TOOLKIT

Today there are well accepted benchmarks for producing
various types of server workloads. Notably, the Transaction
Processing Performance Council (TPC) [9] provides a well es-
tablished suite of server workload benchmarks, including TPC-
App for application server and web services, TPC-C/TPC-E
for on-line transaction processing against a database, and TPC-
H for ad-hoc decision support. TPC defines a set of functional
requirements for each benchmark, and then vendors can use
proprietary or open systems to implement the benchmark. Our
research goal is to develop both the tools which allow for
desktop workload benchmarks to be created and driven as
well as to define standardized benchmarks for client workloads
such as the definition of the categories of workloads (for
example, administrative worker, and application developer). In
the following sub-sections we introduce the approach and our
prototype implementation of desktop benchmarking.

A. DeskBench approach
DeskBench provides recording and playback capability of

client user actions, keyboard and mouse events, by intercepting
then later injecting the events while monitoring the updates
to the application’s screen frame buffer to detect event com-
pletion. The architecture of the system and how it integrates
within the software stack of the client machine is depicted in
Figure 2. The lightweight software layer intercepts the function
calls between the application and window manager library.
In case of X Windows [16] system it is the XLib library,
but the same functionality can be implemented for Microsoft
Windows platform by implementing this functionality for its
window manager. DeskBench operates in one of two modes:
recording and replay.

Recording phase: During the recording phase all of the
keyboard and mouse-click events that are generated by the
window manager and passed to the application are recorded.
Optionally, the timing of actual user think-times, i.e. the delays
between actions, can be also measured and recorded. At each
instance that may require enforcing the synchronization of the
replay processing the user can denote this in the recorded
artifact by pressing a defined key sequence (e.g. prtScr key).
An example of such a synchronization point is following a
“double-click” event to open a window/application, the next

action has to be delayed until the screen fully refreshes. In
this case the tool user signals the synchronization point after
the screen is fully refreshed. This way during the replay
phase DeskBench will delay the issuing of the next action
until the screen reaches the proper state. A synchronization
point represents a screen state that is the logical end of a
set of events that either is a necessary point to reach before
proceeding with subsequent actions, or is a point that the
tool user wants to mark for measured execution time. These
are used by the play back mechanism to monitor the screen
images for completion, after which play back can continue
on to the next set of recorded events from the artifact. For
each synchronization point, there is one or more hash codes
stored with it in the artifact. The hash codes represent an MD5
hash[14] of the screen image buffer that is expected at the
completion of the corresponding event element of the artifact
being played. By limiting the checking of hash codes to the
synchronization points in the artifacts it greatly reduces the
CPU needed to process the hashes and thereby the amount of
processing needed to monitor the event processing.

Replaying phase: When replaying DeskBench processes
each event found in the given artifact file in order and
injects these into the window manager. Interleaved with event
injection is monitoring of the returned screen updates so as
to be able to detect event completion at each of the recorded
synchronization points. This playback process is depicted in
Figure 3. The horizontal line represents time. Short vertical
black dashed lines represent requests sent from the client
to the desktop running on the server. Short vertical dash-
dotted lines (in red) represent screen updates arriving from
the server. High vertical solid black lines represent synchro-
nization points when the observed screen states are compared
with the expected one until a match occurs, signaling event
completion. Assume that the prior artifact finished at time t0
(which is the time instance of the arrival of the last update
associated with that artifact). Periodic screen checking occurs
at t1. The procedure used at the synchronization point to
determine event completion is to first compare the hash code
of the the observed screen with those defined in the artifact
for the current synchronization point. If there is no match, the
“fuzzy” comparison initiates and proceeds as described in the
next paragraph. When a match is detected, the system delays
the execution for the duration representing the configured
user think time (equal to t2 − t0 in Figure 3). Observe that
since some time have already elapsed, due to the lag between
the arrival of the last response of the prior artifact and the
recognition of the synchronization point (t1). Thus the actual
wait time since t1 is the desired think time reduced by t1− t0.
After the think time elapses the next action of the artifact is
executed at t2. It is followed by all actions that do not require
synchronization as well as responses arriving from the server.
After the last event prior to a synchronization point is played,
several checks of the screen state can occur but result in a non-
match, therefore the system keeps waiting for the arrival of the
proper screen update. Finally, the last required response arrives
from the server at t3 and is identified by the system at t4. If the
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Fig. 3. DeskBench replaying process. The artifact starts at t2 after the required think time. Throughout the period between t2 and t3 keyboard and mouse
requests are sent to the server (black vertical dashed lines) and the screen updates arrive from the server (vertical red dot-dashed lines). After sending last
request (at tcc) system starts checking incoming updates. The final update arrives at t3 and is recognized by the system at t4. At this instance DeskBench,
computes the artifact’s response time (t3 − t2), and initiates new think time.

match is found the response time is computed as t3 − t2 and
the process repeats for the next artifact. In the event that the
system waits too long and no proper screen can be matched
(either exactly or via the “fuzzy” matching) DeskBench stops
replaying and reports an out of synchronization exception.

Delta(AExpected, AObtained)

Area(A)
≤ TExpected

Area(BObtained)

Area(Screen)
≤ TUnexpected

(1)

“Fuzzy” matching of screen states: An initial version of
DeskBench required an exact match of the hash code of the
current screen image to that of the hash code stored at the
synchronization point of the recorded artifact. This worked
adequately but required more controlled environments to run
properly. For instance the smallest change of any pixels in
the screen image, such as a scroll bar being even a slight
bit different in length would cause the driver to not find a
match and the playback would be halted. This compelled us
to invent novel methods of ”fuzzy” hash code comparisons
that have proven beneficial by providing the desired improved
robustness. The current version of the DeskBench prototype
detects small differences in regions outside of the target area
as non-essential in making a match, as well as allowing some
small percentage of change even within the screen region of
interest. This greatly increases the hit ratio for matches while
maintaining high accuracy in the proper recognition of event
completion. As new screen image hash codes are encountered
which are not exact matches, yet considered ”fuzzy” matches
to those listed for the corresponding synchronization point,
they are automatically added to the list of matching hash codes
and recorded in the artifact file. This increases the chance
for exact matches and thereby increases robustness for future
replays of the same artifact.

Figure 4a illustrates this process. The changes that we
expect after execution of an artifact are denoted as A. The
figure shows them as a rectangular area, but of course in
general they do not have to be shaped like this (the algorithm
uses just the number of pixels changed and not the shape of the
region). Additional changes that we did not expect are denoted

by B. In such a setting the screens are deemed as matching if
both inequalities are true 1, where TExpected and TUnexpected

are the thresholds for making the decision and represent a
fraction of pixels that is allowed to differ in the expected
change region and the fraction of pixels that are allowed to
differ in the remaining part of the screen, respectively. We have
experimented with setting the values of these variables and
comment on it in Section III. Delta(A, B) for corresponding
pixel sets A and B is defined as the number of pixels differing
in those sets.

An example of this process is depicted in Figure 4b. The
initial screen is a desktop and the expected one after the
execution of a synchronized action has a windows explorer
window opened and no items highlighted. The screen obtained
has the window opened but in addition a file is highlighted
and the icon on the desktop was moved. The system detects
this fact and evaluates against the thresholds defined with
Inequalities 1, determining that the screens differ too much
thus aborting further execution.

Prior to our introducing ”fuzzy” logic to better detect event
completion, we found that small screen differences would
occasionally get our replay out of synchronization. And even
with the ”fuzzy” logic, if the differences are large enough,
this can still occur. As an aid when we first were developing
the tool, we built a utility to assist in the detection of what
might be only a few pixels difference between what was
expected and what was received. As DeskBench records it
saves screen images for the state of each synchronization point.
Thus the utility does a pixel-level comparison of the expected
screen image with the screen image of what was received
and produces an image of just the areas with differences.
This can then be easily viewed to find where to focus in
determining what has changed, and what needs to be corrected
in the recorded artifact. As stated, if the differences are small,
the current enhanced ”fuzzy” matching will handle these
differences automatically.

Optimization of CPU consumption during the replaying
process: The crucial component of CPU processing is comput-
ing the screen hash codes as the screen updates arrive. There
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Fig. 4. Concept of “fuzzy” comparison of screens (a). An expected area to
change after the execution of an artifact is denoted by A. Additional areas
outside of A that have changed are denoted by B. An example of “fuzzy”
screen comparison (b).

are several ways of optimizing this process. One optimization
that we have implemented is limit the completion checking
until the last event of a synchronization set is injected (this is
the black dashed line at tcc in Figure 3), which greatly reduces
the amount of CPU cycles needed to perform the hash code
matching necessary.

Another implemented optimization is to compute screen
hashes not at each screen update received but at predefined
intervals. The interval can not be too large because that would
slow down the initiation of next artifact, that is the lag time
after the last response arrives from the server (in our example
shown in Figure 3 these lag times are t1 − t0 and t4 − t3).
In our prototype (which is described in Subsection II-D) we
used the interval value of 250ms which we found sufficiently
large to result in very low CPU utilization and also responsive
enough so the extra delay between artifacts is small.

Another possible optimization is to subdivide the screen into
subregions and then compute and store hash codes for each
of them separately. This way the hash code computation can
be done on each arrival of screen updates (because it affects
only a small part of the screen).

B. Measuring the screen update quality
Multiple applications, especially the ones rendering the

video frames with high frequency, can finish the process-
ing in time but with poor quality to the user. The reason
is that most of the screen updates sent by the application
running on the server will get discarded because of the lack
of resources (either too slow of a network connection or
overcommitment of the server CPU). We want to detect and
quantify this deterioration in quality. In order to accomplish
this the measurement of the number of changes of a given
screen region can be computed during the replay of a given
artifact on a lightly loaded server with very low latency
and a high bandwidth network connection to the client. This
value constitutes a comparison baseline. Later during the
replay of the artifact under normal conditions the number of
region refreshes can be compared with that baseline to get an
objective measurement. A similar approach was applied to the

volume of network traffic associated with the artifact in slow
motion benchmarking [13].
C. Required preparation for DeskBench execution

It would be remiss to not point out that a fairly deterministic
state of the desktop is required to be maintained from record-
ing to playback. For instance to maintain a common desktop
with icons arranged in the same order, we use roaming profiles
for Microsoft Windows clients so that the same user id running
on different hosts will appear the same. Further we turn off
attributes of the graphical user interface which would cause
differences in the screen images, examples include removing
the clock from the task bar and turning off the blinking cursor.
With the enhancements to use fuzzy matching and support for
multiple hash codes many of these non-deterministic aspects
of the user desktop can be properly handled without special
preparations.

Options for batch testing: DeskBench makes it easy to
create and save recorded artifacts that can then be individually
re-played or included in a playlist for automated, scripted
playback. Configuration settings allow for artifacts named
in playlists to be run in random or deterministic order, to
be run once or repetitively, and to have user think-time
delays included between execution of the elements of the
artifacts. Specifically think-time delays can be set to be fixed,
exponentially random, or to the actual timing from that of
the recording. DeskBench runs with low execution overhead
thus permitting many simulated clients to be ran at the same
time from a single machine. This is a key advantage as it
permits us to realize our goal of efficiently driving realistic
client workloads without unwanted effects from the execution
of the driver program itself.

Results of a DeskBench run: There are two outputs of
DeskBench that are of interest: automated execution of user
desktop workloads resulting in loading the tested system, and
the measurement of execution times for the desktop events of
interest. For the latter, when DeskBench plays back artifacts
it captures precise timing for each of the groups of events
represented by a synchronization point, and reports these for
use in subsequent performance analysis.
D. Prototype Implementation

As a proof of concept, we have developed a prototype
implementation of DeskBench. We have implemented it with
the XLib library in Linux OS and are using the “rdesk-
top” program as a test application. ”rdesktop” is an open-
source client for Windows NT Terminal Server and Windows
2000/2003 Terminal Services, which is capable of natively
speaking Remote Desktop Protocol (RDP) [6] and currently
runs on most UNIX based platforms using the X Windows
System to present the client Windows desktop [2]. Because of
that our prototype may not yet be fully generic since it was
not tested with other applications that may potentially exercise
XLib functions we did not handle.

In case of the XLib library the following calls are re-
sponsible for the basic windowing operations that have to be
modified and intercepted/injected:



• XNextEvent() which is used by applications to process
the windowing events such as keyboard, mouse, and
window visibility notifications, etc.

• XPutImage() that applications use to update a screen
region

• XCopyArea() used for retrieving data from the cache
However, as discussed in the prior section the method has no

inherent dependencies on any application specific constructs
or metrics and can be applied to other operating systems and
window managers too.

III. PERFORMANCE STUDIES

In order to illustrate the flexibility and applicability of
DeskBench to performance evaluation of virtual workstations
we have conducted a series of experiments on our testbed.
The artifacts used in the experiments represent a subset of
actions of a personal computer user. However, they are not
exhaustive and the results presented should not be treated
as definitive capacity estimates for a given user class but
rather as illustrations of applicability and flexibility of our
benchmarking tool.

The experiments are designed to test two aspects of desktop
virtualization: (1) scalability of virtual machine hypervisors
to the number of concurrent sessions and the intensity of
workload applied, and (2) sensitivity of the virtual desktop
to network latencies. The first aspect is crucial for capacity
planning of back-end hosting resources. Good understanding
of actual responsiveness as perceived by the end-user is the
key metric that needs to be used in deciding what levels of
concurrency (number of desktop virtual machines per physical
server) should be used. The second aspect, impact of network
latency, lets us reason about the distances between the server
hosting the virtual machine and the end-user’s device so as to
not noticeably deteriorate the user’s experience.
A. Experimental setup

The setup for our experiments is presented in Figure 5. We
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Red Hat Linux
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VMWare ESX

Fig. 5. Logical view of the testbed environment.

have used two IBM HS20 Blades. The first runs ESX Server
(version 3.0.2) hosting virtual machines running the Microsoft
Windows XP operating system. These virtual machines repre-
sent desktop workstations running within a virtualized desktop
environment. This blade is equipped with 1 dual core Xeon
CPU (3.2GHZ dual core). The second blade runs Red Hat
Enterprise Linux AS 3 and executes the DeskBench program.
This blade has 2 Xeon CPUs (each 3.2GHZ dual core). The
blades are within the same blade center thus networking
latency is practically zero, but for network latency experiments
we have introduced simulated delay using the Linux tc [15]
utility. The protocol used to access workstations from client
programs was RDP v. 5 [6].

B. Artifacts used in the experiments
In order to demonstrate flexibility and applicability of the

DeskBench tool we have created 7 artifacts representing a typ-
ical interaction of end-users with their desktops. The artifacts
exercise multiple GUI functionalities as well as requiring the
operating system to load files, and to utilize both the network
and storage. The artifacts we have used are:

• Acrobat: Open an Adobe Acrobat document and browse
the pages. Synchronization elements are after the open-
ing, following each page change, and at the close of the
application.

• Folder: Open a folder within the local file system.
Highlight and unhighlight files and directories. Change
directories and quit the Microsoft Windows Explorer. The
synchronization elements are after each action.

• MS Word: Load large document with text and graphics,
browsing the document and type a few words. Synchro-
nization elements are located after each operation except
of scrolling pages down.

• Picture: Open several pictures (with resolution
3200x2400) and zoom in on some of them.
Synchronization is after opening each picture and
following each of the application closing operations.

• Powerpoint: Open a Microsoft Powerpoint presentation
file and scroll through the pages. Synchronization ele-
ments are after opening the Powerpoint and after dis-
playing each of the pages.

• Web browser: Open a web browser and visit websites.
Synchronization elements are after opening the applica-
tion and then after loading each of the websites.

Creation of the above artifacts requires only a few minutes
of work. The “fuzzy” matching of screen images provides for
extra flexibility when dealing with applications that are not
fully deterministic or would require significant configuration
effort to make them deterministic. An example might be a web
browser artifact where the website we have visited changes
a little bit with each visit, (e.g. contains a visit counter and
the date of last visit). With the exact matching technique this
website could not be benchmarked but the threshold based
extensions handle this case well.

C. Discussion of the experimental results
We have performed two groups of experiments designed

to quantify the quality of a user’s desktop experience. The
first group was focused on measuring the responsiveness of
artifacts described above with increased contention for server
resources. The second group focused on quantifying the impact
of network latency (and thus RDP protocol slowdown) on the
responsiveness of the artifacts.

Effects of the hypervisor contention: In each round of
these experiments we run DeskBench clients against the set
of test virtual machines that are hosted on one HS20 Blade.
The number of active sessions (i.e. virtual machines being
driven) varied between 1 and 8. Each desktop session replayed
the artifacts described above 20 times in random order to
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Fig. 6. Responsiveness of opening the Acrobat Reader (a), Acrobat operations
(b), Internet Explorer (c), Powerpoint (d,e), and word processor (f) as a
function of number of VMs on a PM.

avoid synchronization effects. Within each replay the delay
after reaching each synchronization point was 100ms thus
emulating tireless users. This is why we do not treat this group
of experiments as indicative of realistic capacities but rather
illustrative of the flexibility and accuracy of the DeskBench
tool. In realistic conditions the load intensity is significantly
smaller due to greater user think-times than we used in the
experiments.

Representative results from the contention experiments are
presented in Figure 6. Figure 6(a) shows the results for opening
the acrobat document. The time stretches from around 2
seconds with one concurrent session up to more than 10
seconds with 8 concurrent sessions, thus representing a five-
fold slowdown. Similar results are shown for other applications
in our benchmark and illustrate applicability of DeskBench.
Having larger sample runs would eliminate the spikes seen
in some of the graphs. These are included to illustrate the
capabilities of the tool with analysis of the results saved for a
future publication.

Effects of the network latency: The second group of
experiments focused on quantifying the impact of network
latency on the user’s desktop experience. In order to study it
in a controlled manner we introduced simulated network delay
using the tc tool that is part of modern Linux distributions. It
allows for setting various queuing disciplines at the network
interface level and also changing the key properties of the
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Fig. 7. Responsiveness of typing in notepad (a) and picture rendering (b) as
a function of network latency.

interface, such as transmission rate and added latency. In
each experiment we run a single concurrent DeskBench client
against a test virtual machine (as shown in Figure 5). We com-
pared the experimental results of varying values of network
latency introduced in the network interface of the server that
was running the DeskBench program. We choose to sample
the values between 0ms and 140ms because they represent the
realistic range observed in networking applications. The low
latency can be achieved in local setups when the back-end
server is on the same LAN as the hosted virtual machines (as
was the case for our experimental setup). The high RTT values
(in the order of 100ms or more) are commonly observed when
accessing computing systems located across the continent
(stated with respect to the United States). The results of these
experiments are using (a) the Notepad text editor and (b) a
picture rendering program are presented in Figure 7. Time
required to render and transmit the picture stretches almost
6 times representing a significant degradation in the user’s
experience. Similarly, keystroke response stretches approxi-
mately 3 times. Note that values for sample points with a 0ms
RTT correspond to the experiments with no slowdown in the
Ethernet adapter on the Linux server. In this case the actual
RTT was on the order of 0.6ms.

Overhead of the benchmarking tool: While conducting
the experiments we also measured the utilization of the Linux
server that was running the DeskBench program. The per-
session utilization of the server is about 2% which is almost
identical to that of the unmodified native rdesktop client
program on which our DeskBench prototype was based. In
experiments with all 8 concurrent sessions the DeskBench
Blade server runs at 84% idle (i.e. only 16% utilization)
thus guaranteeing that the effect of any contention from
driving parallel desktop clients has negligible effect on the
benchmarking results. Of course experiments involving much
larger numbers of client instances would require more servers
running DeskBench to drive the desktop client workloads.

Choice of the “fuzzy” matching thresholds: We have
experimented with the choice of two parameters for deciding
whether two screens match. The adaptivity of the system
increases with larger value of the parameters but may lead
to unsynchronized execution. It is not a big risk though,
because even if the current incorrectness is not captured it
will be revealed in one of the subsequent actions which will
diverge significantly to exceed even relaxed threshold values.
Throughout our experimentation with the system we found



that the best values of the parameters are TExpected = 0.01
and TUnexpected = 0.001. These values are large enough to
avoid practically all “false” differences.

IV. RELATED WORK

There are several approaches to provide remote desktop
computing. The first is the shared services environment where
multiple users share a single instance of the back-end operating
system. In this scenario each user has a session at the server
and his control over the resources are limited. He can not
install or modify applications and can not modify the oper-
ating system or any libraries. Examples of such systems are
Windows Terminal Server [8] and Citrix [4].

Another approach is to dedicate a virtual machine to the
user. In this model the user’s experience is almost as flexible
as on the “thick-client” desktop or laptop. Users can not only
modify applications and settings of the system, but may also
potentially install new libraries, modify the operating system
itself and restart his virtual machine without interrupting the
work of other users. This model is suitable for more demand-
ing user classes such as knowledge workers and developers.
Examples of such virtualization systems are Xen [19] and
VMWare [10]. Another example of a remote desktop system,
although very different from the one described above, is the
X Window system [16]. It is different from the “thin-client”
systems that we focus on because the actual execution of the
window manager happens on the client machine. Thus instead
of screen updates the server relies on higher level primitives
being sent to the client.

There is little work on performance evaluation of virtual
desktop systems. The closest work to ours is VNCPlay [20]
which captures and replays keyboard and mouse events within
the RealVNC client [18]. It is based on matching small screen
regions around the coordinates of mouse-click events and
then pairing these with expected screen updates. VNCPlay’s
recording process is not structured and has no explicit tagging
of synchronization elements thus the user has less control over
which actions are timed. Our approach differs by allowing for
more general artifacts (even covering the whole screen). As
well it provides for “fuzzy” matching making it more robust
in adapting to desktops which are not fully deterministic.
Moreover, DeskBench is application and protocol agnostic
because it can be implemented within the window manager
library.

Another closely related work is Slow Motion Benchmark-
ing [13]. It uses the concept of slow benchmarking that
captures network traffic between the client and the server
and replays it later in slow motion. The synchronization of
the replay process is achieved because sufficient gaps are
introduced between sending events to make sure that the server
and the client are in a consistent state. This has an advantage
of not requiring any execution on the client machine but can
not be used to attain high replay speeds crucial for capacity
benchmarking. A very interesting follow up, although not
directly related to the benchmarking problem, is the virtual
desktop recording capability described in [11].

Microsoft has developed a proprietary system devoted to
testing the performance of Windows Terminal Services ses-
sions. It is described in [7]. It has limited capability of
synchronizing the replay by waiting for a given string to
appear. Because of that this approach is not generic and can not
be used with graphics display or to video replay that does not
contain well defined strings in the RDP protocol stream itself.
Also, it is limited to a single protocol type and architecture.

The VMWare VDI sizing document [3] bases virtual desk-
top benchmarking directly on the Microsoft Terminal Server
Capacity and Scaling toolkit described above.

V. CONCLUSIONS AND FUTURE WORK

A flexible virtual workstation benchmarking system is pre-
sented. It allows for rapid creation of artifacts representing user
actions and replaying them in synchronized manner against a
test system. It uses a novel approach to intercept and inject
keyboard and mouse events and monitoring the screen updates
in an application agnostic manner. It allows for replaying the
artifacts at maximum speed thus making it possible to not only
measure the responsiveness of the system precisely but also
generate high load on the server. We have evaluated the system
on the testbed and found it to be applicable and accurate.

Future research involves defining standard benchmarks for
typical user groups, e.g., office worker or knowledge worker.
Creating these may lead to establishing of virtual desktop
benchmarking standard.
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