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Abstract—Application tracing in production systems requires
dynamic and flexible instrumentation mechanisms with low-
overhead. Tracing tools may be required to be started at anytime,
and it can take potentially long time periods to collect enough
information, but at the same time should not adversely affect
service quality. Existing user-space code monitoring solutions are
either inflexible developer-driven static instrumentation which
require manual effort, or black-box dynamic instrumentation
techniques which are flexible but have high overhead.

To solve this problem, we introduce a new hybrid instrumen-
tation technique for user-space code monitoring called iProbe,
which is flexible and has low overhead. iProbe takes a novel
2-stage design, and offloads much of the dynamic instrumen-
tation complexity to an offline compilation stage. It leverages
standard compiler flags to introduce “place-holders” for hooks
in the program executables. Then it utilizes an efficient user-
space HotPatching mechanism which dynamically instruments
the functions to be traced and enables execution of instrumented
code in a safe and secure manner.

We implemented iProbe as a dynamic application profiling
framework. In its evaluation on micro-benchmarks and SPEC
CPU2006 benchmark applications, the iProbe prototype achieved
the instrumentation overhead an order of magnitude lower
than existing state-of-the-art dynamic instrumentation tools like
SystemTap and DynInst. We also built a hardware event profiling
tool based on iProbe, and were able to obtain function-level
hardware event breakdown on SPEC CPU2006 applications with
controlled performance overhead (e.g., under 5%).

Index Terms—monitoring, tracing, hotpatching, production
systems, low-overhead

I. INTRODUCTION

Ideally, a production system tracing tool should have zero-

overhead when it is not activated and should have a low

overhead when it is activated. In other words, its performance

should not adversely effect the usage of the traced application.

At the same time, it should be flexible enough so as to meet

versatile instrumentation needs at run-time for management

tasks such as trouble-shooting or performance analysis.

Over the years researchers have proposed many tools to

assist in application performance analytics [1], [2], [3], [4],

[5], [6], [7], [8]. While these techniques provide flexibility, and

deep granularity in instrumenting applications, they often trade

in considerable complexity in system design, implementation

and overhead to profile the application. For example, binary

instrumentation tools like Intel’s PIN Instrumentation tool [1],

DynInst [8] and GNU debugger [2] allow complete blackbox

analysis and instrumentation but incur a heavy overhead,

which is unacceptable in production systems. Inherently, these

tools have been developed for the development environment,

hence are not meant for a production system tracer.

Production system tracers such as DTrace[3] and

SystemTap[4] allow for low overhead kernel function

tracing. These tools are optimized for inserting hooks in

kernel function/system calls, and can monitor run-time

application behavior over long time periods. However, they

have limited instrumentation capabilities for user-space

instrumentation, and incur a high overhead due to frequent

kernel context-switches and complex trampoline mechanisms.

Software developers often utilize program print statements,

write their own loggers, or use tools like log4j [9] or log4c [10]

to track the execution of their applications. Those manually

instrumented probe points can easily be deployed without ad-

ditional libraries or kernel support, and have a low overhead to

run without impacting the application performance noticeably.

However, they are inflexible and can only be turned on/off at

compile-time or before starting the execution. Besides, usually

only a small subset of functions is chosen to avoid larger

overheads.

In this paper, we introduce a dynamic instrumentation

framework called iProbe. iProbe has instrumentation over-

heads comparable to print/debug statements, while still giving

users the flexibility to choose targets in the execution stage.

We evaluated iProbe on micro-benchmark and SPEC CPU

2006 benchmarks. iProbe showed an order of magnitude

performance improvement in comparison to SystemTap[6]

and DynInst[8] in terms of tracing overhead and scalability.

Additionally, the instrumented applications incur negligible

overhead when iProbe is not activated. We also present a

new hardware event profiling tool called FPerf developed in

the iProbe framework. FPerf leverages iProbe’s flexibility and

scalability to realize a fine-grained performance event profiling

solution with overhead control. In the evaluation, FPerf was

able to obtain function-level hardware event breakdown on

SPEC CPU2006 applications while controlling performance

overhead (e.g., under 5%)

The main idea in iProbe design is decoupling the process

of run-time instrumentation into offline and and online stages,

which avoids several complexities faced by current state-of-

the-art mechanisms [3], [4], [8], [1] such as instruction over-

writing, complex trampoline mechanisms, and code segment

memory allocation, kernel context switches etc. Most existing

dynamic instrumentation mechanisms rely on a trampoline



based design, and generally have to make several jumps to

get to the instrumentation function as they not only do instru-

mentation but also simulate the instructions that have been

overwritten. Additionally, they have frequent context-switches

as they use kernel traps to capture instrumentation points, and

execute the instrumentation. The performance penalty imposed

by these designs are unacceptable in a production environment.

Our design avoids any transitions to the kernel which

generally causes higher overheads, and is completely in user

space. iProbe can be imagined as a framework which provides

a seamless transition from an instrumented binary to a non-

instrumented binary. We use a hybrid 2-step mechanism which

offloads dynamic instrumentation complexities to an offline

development stage, thereby giving us a much better perfor-

mance. The following are the 2 stages of iProbe:

• ColdPatch: We first prepare the target executable by

introducing dummy instructions as “place-holders” for

hooks during the development stage of the application.

This can be done in 3 different ways: Primarily, we can

leverage compiler based instrumentation to introduce our

“place-holders”. Secondly we can allow users to insert

macros for calls to instrumentation functions which can

be turned on and off at run-time. Lastly we can use

static binary rewriter to insert place-holders in the binary

without any recompilation. iProbe uses binary parsers to

capture all place-holders in the development stage and

generates a meta-data file with all possible probe points

created in the binary.

• HotPatch: We then leverage these place-holders during

the execution of the process to safely replace them with

calls to our instrumentation functions during run-time.

iProbe uses existing tools, ptrace [7], to modify the code

segment of a running process, and does safety check to

ensure correctness of the executing process. Using this

approach in a systematic manner we reduce the overhead

of iProbe while at the same time maintaining a relatively

simple design.

We propose a new paradigm in development and packaging

of applications, wherein developers can insert probe points

in an application by using compiler flag options, and apply-

ing our ColdPatch. An iProbe-ready application can then be

packaged along with the meta-data information and deployed

in the production environment. iProbe has negligible effect

on the application’s performance when instrumentation is not

activated, and low overhead when instrumentation is activated.

We believe this is an useful feature as it requires minimal

developer effort, and allows for low overhead production-stage

tracing which can be switched on and off as required. This

is desirable in long-running services for both debugging and

profiling usages.

The rest of the paper is organized as following. Section

II discusses the design of iProbe framework, explaining our

ColdPatching, and HotPatching techniques; we also discuss

how safety checks are enforced by iProbe to ensure cor-

rectness, and some extended options in iProbe for further
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Fig. 1. The Process of ColdPatching.

flexibility. Section III compares traditional trampoline based

approaches with our hybrid approach and discusses why we

perform, and scale better. Section IV explains the imple-

mentation of iProbe, and describes FPerf a tool developed

using iProbe framework. In section V we evaluate the iProbe

prototype. Section VI discusses the related work, and Section

VII concludes this paper.

II. DESIGN

In this section we present the design of iProbe. Additionally,

we then explain some safety checks imposed by iProbe that

ensure the correctness of our instrumentation scheme. Finally,

we discuss extended iProbe modes, static binary rewriting and

user written macros, which serve as alternatives to the default

compiler-based scheme to insert instrumentation in the pre-

processing stage of iProbe.

The first phase of our instrumentation is an offline pre-

processing stage to make the binaries ready for runtime

instrumentation. We call this phase ColdPatching. The second

phase is the an online HotPatching stage which instruments the

monitored program dynamically at runtime without shutting

down and restarting the program. Next, we present the details

of each phase.

A. ColdPatching Phase

ColdPatching is a pre-processing phase which generates

the place-holders for hooks to be replaced with the calls for

instrumentation. This operation is performed offline before any

execution by statically patching the binary file. This phase

is composed of three internal steps that are demonstrated in

Figure 1.

• Firstly, iProbe uses compiler techniques to insert instru-

mentation calls at the beginning and end of each function

call. The instrumentation parameters, are decided on the

basis of the design of the compiler pass. The current

implementation by default passes callsite information and

the base stack pointer as they can be used to inspect and

form execution traces. Calls to the these instrumentation

functions must be cdecl calls so that stack correctness

can be maintained, this is discussed in further detail in

Section II-C.
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• Secondly, iProbe parses the executable and replaces all

instrumentation calls with a NOP instruction which is a

no-operation or null instruction. This generates instruc-

tions in the binary which does no-operation, hence has

a negligible overhead, and acts as an empty space for

iProbe to be overwritten at run-time.

• Thirdly, iProbe parses the binary and gathers meta-data

regarding all the target instrumentation points into a

probe-list. Optionally, iProbe can strip away all debug and

symbolic information in the binary making it more secure

and light-weight. The probe-list is securely transferred to

the run-time interface of iProbe and used to probe the

instrumentation points. Hence iProbe does not have to

rely on debug information at run-time to HotPatch the

binaries.

B. HotPatching Phase

Once the application binary has been statically patched

(i.e., ColdPatched), instrumentation can be applied at runtime.

Compared to existing trampoline approaches, iProbe does

not overwrite any instructions in the original program, or

allocate additional memory when patching the binaries, and

still ensures reliability. In order to have a low overhead, and

minimal intrusion of the binary, iProbe avoids most of the

complexities involved in HotPatching such as allocation of

extra memory in the code segment or scanning code segments

to find instrumentation targets in an offline stage. The process

of HotPatching is as follows:

• Firstly, iProbe loads the relevant instrumentation func-

tions in a shared library to the code-segment of the

target process. This along with allocation of NOPs in the

ColdPatching phase allows iProbe to avoid allocation of

memory for instrumentation in the code segment.

• The probe-list generated in the ColdPatching phase is

given to our run-time environment as a list of target probe

points in the executable. iProbe can handle stripped bina-

ries due to previous knowledge of the target instructions

in the ColdPatching.

• As shown in Figure 3, in our instrumentation stage,

our HotPatcher attaches itself to the target process and

issues an interrupt (time T1). It then performs a reliability

check (see Section II-C), and subsequently replaces the

NOP instructions in each of the target functions, with

a call to our instrumentation function. This is a key

step which enables iProbe to avoid the complexity of

traditional trampoline [11], [12] by not overwriting any

logical instructions (non-NOP) in the original code. Since

the place-holders (NOP instructions) are already available,

iProbe can seamlessly patch these applications without

changing the size or the runtime footprint of the process.

Once the calls have been added iProbe releases the

interrupt and let normal execution proceed (time T2).

• At the un-instrumentation stage the same process is

repeated, with the exception that the target functions

are again replaced with a NOP instruction. The period

between time T2 and time T3 is our monitoring period,

wherein all events are logged to a user-space shared

memory logger.

State Transition Flow: Figure 2 demonstrates the op-

erational flow of iProbe in the example to instrument the

entry and exit of the func_foo function. The left most

figure represents the instructions of a native binary. As an

example, it shows three instructions (i.e., push, pop, inc) in

the prolog and one instruction (i.e., pop) in the epilog of the

function func_foo. The next figure shows the layout of this

binary when it is compiled with the instrumentation option.

As shown in the figure, two function calls, foo_begin and

foo_end are automatically inserted by the compiler at the

start and end of the function respectively. iProbe exploits

these two newly introduced instructions as the place-holders

for HotPatching. The ColdPatching process overwrites two

call instructions with NOPs. At runtime, the instrumentation

of func_foo is initiated by HotPatching those instructions

with the call instructions to the instrumentation functions:

begin_instrument and end_instrument. This is il-

lustrated in the right most figure in Figure 2.

Logging Functions and Monitoring Dispatchers : The

calls from the target function to the instrumentation function

are generally defined in the coldpatch stage by the compiler.

However, iProbe also provides monitoring dispatchers which

are common instrumentation functions that are shared by target

functions. Our default instrumentation passes the call site

information, and the function address of the target function

as parameters to the dispatchers. Each monitoring event can

be differentiated by these dispatchers using a quick hashing

mechanism representing the source of each dispatch. This
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allows iProbe to uniquely define instrumentation for each

function at run-time, and identify its call sites.

C. Safety Checks for iProbe

Safety and reliability of the instrumentation technique is a

big concern for most run-time instrumentation techniques. One

of the key advantages of iProbe is that because of its hybrid

design reliability and correctness issues are handled in a better

way inherently. In this section we discuss how our HotPatch

can achieve such properties in details.

HotPatch check against Illegal instructions: Unlike

previous techniques iProbe relies on compiler correctness to

ensure safety and reliability in its binary mode. To ensure

correctness in our ColdPatching phase, we convert call instruc-

tions to instrumentation functions with NOP instruction. This

does not in any way effect the correctness of the binary, except

that instrumentation calls are not made. To ensure run-time

correctness, iProbe uses a safety check when it interrupts the

application while HotPatching. Our safety check pass ensures

that the program counters of all threads belonging to the target

applications do not point to the region of code that is being

overwritten (i.e. NOP instructions are not overwritten while

they are being executed. This check is similar to those from

traditional Ptrace[7] driven debuggers etc [13], [11], [14]. Here

we use the Ptrace GETREGS() call to inspect the program

counter, and if it is currently pointing to the target NOP

instructions, we allow the execution to move forward before

applying the HotPatch. Unlike existing trampoline oriented

mechanisms iProbe has a small NOP code segments equal

to the length of a single call instruction that it overwrites

with instrumentation calls, this means that the check can be

performed in a fast and efficient manner. It is also important to

have this check for all threads which share the code-segment,

hence the checking must be able to access the process memory

map information, and interrupt all the relevant threads.

Safe parameter passing to maintain stack consistency:

An important aspect for instrumentation is the information

passed along to the instrumentation function via the parameter

values. Since the instrumentation calls are defined by the

compiler driven instrumentation, the mechanism in which the

parameters passed are decided based on the calling convention

used by the compiler.

Calling conventions can be broadly classified in two types:

caller clean-up based, and callee clean-up based. In the former

the caller is responsible to pop the parameters passed to

function, and hence all parameter related stack operations

are performed before and after the call instruction inside

the code segment of the caller. In the later however, the

callee is responsible to pop the parameters passed to it. Since

parameters are generally passed using the stack it is important

to remove them properly to mantain stack consistency.

To ensure this iProbe enforces that all calls that are made

by the static compiler instrumentation must be cdecl calls

where the caller performs the cleanup as compared to std calls,

where the callee performs it[15]. As the stack cleanup is auto-

matically performed, it maintains stack consistency, and there

is a negligible impact in performance due to the redundant

stack operations. Alternatively for std call convention, push

instructions could also be converted to NOPs and HotPatched

at run-time, we do not do so as a design choice.

Address Space Layout Randomization: Another issue

that iProbe addresses is ASLR (address space layout random-

ization), a security measure used in most environments which

randomizes the loading address of executables and shared

libraries. However, since iProbe assumes the full access to

the target system, the load addresses are easily available.

HotPatcher uses the process id of the target to find all load

addresses of each binary/shared library and uses them as base

offsets to generate correct instruction pointer addresses.

D. Extended iProbe Mode

As iProbe ColdPatching requires compiler assistance, it

is unable to operate on pre-packaged binary applications.

Additionally, compiler flags generally have limited instrumen-

tation flexibility as they generally operate on a programming

language abstraction(eg. function calls, loops etc.). To provide



further flexibility, iProbe provides a couple of extended options

for ColdPatching of the application

1) Static Binary Rewriting Mode: In this mode we use

a static binary rewriter to insert instrumentation in a pre-

packaged binary. Once all functions are instrumented, we use

a ColdPatching script to capture all call sites to the instrumen-

tation functions and convert them to NOP instruction. While

this mode allows us to directly operate on binaries, a downside

is that our current static binary instrumentation technique also

uses mini-trampoline mechanisms. As explained in Section III

static binary rewriters use trampoline based mechanisms which

induces minimum two jumps. In the ColdPatch phase, we

convert calls to the instrumentation function to NOPs, however

the jmp operations to the trampoline function, and simulation

of the overwritten instructions still remain. This approach

has a small overhead even when instrumentation is turned

off. However, in comparison to pure dynamic instrumentation

approach it reduces the time spent in HotPatching. This is

especially important if the number of instrumentation targets

is high, and the target binary is large, as it will increase the

time taken in analyzing the binaries. Additionally, if compiler

options cannot be changed for certain sections of the program

(plugins/3rd party binaries), iProbe can still be applied using

this extended feature.

Our current implementation uses the dyninst [8] and cobi

[16] to do static instrumentation. This allows us to provide

the user a configuration file and template which can be used

to specify the level of instrumentation (e.g., all entry and

exit points for instrumentation), or names of specific target

functions, and the instrumentation to be applied to them.

Subsequently in ColdPatch we generate our meta-data list, and

use it to HotPatch and apply instrumentation at run-time.

2) Developer Driven Macros: Compiler assisted instrumen-

tation may not provide complete flexibility (usually works on

abstractions, such as enter/exit of functions), hence for further

flexibility, iProbe provides the user with a header file with

calls to macros which can be used to add probe points in

the binary. A call to this macro can be placed as required by

the developer. The symbol name of the macro is then used in

the ColdPatch stage to capture these macros as probe points,

and convert them to NOPs. Since the macros are predefined,

they can be safely inserted and interpreted by ColdPatcher.

The HotPatching mechanism is very much the same, using

the probe list generated by ColdPatch.

III. TRAMPOLINE VS. HYBRID APPROACH

In this section we compare the advantages of our approach

compared to traditional trampoline based dynamic instrumen-

tation mechanisms. We show the steps followed in trampoline

mechanisms, and why our approach has a significant improve-

ment in terms of overhead. The basic process of dynamic

instrumentation based on trampoline can be divided into 4

steps

• Inspection for Probe Points: This step inspects and

generates a binary patch for the custom instrumentation

foo(){

jmp();

}

jmp(){

….foo fix…

foo_instr();

}

foo_instr(){

}

Trap Handler

(in kernel)

Trampoline Function

Fig. 4. Traditional Trampoline based Dynamic Instrumentation Mechanisms.

to be inserted to the target binaries, and find the target

probe points which are the code addresses to be modified.

• Memory Allocation for Patching: Appropriate memory

space is allocated for adding the patch and the trampoline

code to the target binary.

• Loading and Activation of a Patch: At run-time the

patch is loaded into the target binary, and overwrites the

probe point with a jump instruction to a trampoline func-

tion and subsequently to the instrumentation function.

• Safety and Reliability Check: To avoid illegal instruc-

tions, it is necessary to check for safety and reliability at

the HotPatch stage, and that the logic and correctness of

the previous binary remains.

One of the key reasons for better performance of iProbe

as compared to traditional trampoline based designs is the

avoidance of multiple jumps enforced in the trampoline mech-

anism. For instance, Figure 4 shows the traditional trampoline

mechanism used in existing dynamic instrumentation tech-

niques. To insert a hook for the function foo(), dynamic

instrumentation tools overwrite target probe point instruc-

tions with a jump to a small trampoline function (jmp()).

Note that the overwritten code by jmp should be executed

somewhere to ensure the correctness of the original program.

The trampoline function executes the overwritten instructions

(foo fix) before executing the actual code to be inserted.

Then this trampoline function in turn makes the call to the

instrumentation function (foo_instr). Each call instruction

can potentially lead to branch mispredictions in the code

cache and cause high overhead. Additionally tools like DTrace,

and SystemTap [3], [4] have the logger in the kernel space,

and cause a context switch in the trampoline using interrupt

mechanisms.

In comparison iProbe has a NOP instruction which can be

easily overwritten without resulting in any illegal instructions,

and since overwriting is not a problem trampoline function is

not required. This makes the instrumentation process simple

resulting in only a single call instruction at all times.

In addition pure binary instrumentation mechanisms need to

provide complex guarantees of safety and reliability and hence

may lead to further overhead. Since the patch and trampoline



functions overwrite instructions at run-time correctness check

must be made at HotPatch time so that an instruction overwrite

does not result in an illegal instruction, and that the instructions

being patched are not currently being executed. While this

does not enforce a run-time overhead it does enforce a

considerable overhead at the HotPatch stage.

Again iProbe avoids this overhead by offloading this process

to the compiler stage, and allocating memory ahead of time.

Another important advantage of our hybrid approach as

compared to the trampoline approach is that pure dynamic

instrumentation techniques are sometimes unable to capture

functions from the raw binary. This can often be because some

compiler optimizations may inherently hide function calls

boundaries in the binary. A common example of this is inline

functions where functions are inlined to avoid the creation of a

stack frame and concrete calls to these functions. This may be

done explicitly by the user by defining the function as inline

or implicitly by the compiler. Since our instrumentation uses

compiler assisted binary tracing, we are able to use the users

definition of functions in the source code to capture entry and

exit of functions despite such optimizations.

IV. IMPLEMENTATION

The design of iProbe is generic and platform agnostic, and

works on native binary executables. We built a prototype on

Linux which is a commonly used platform for service envi-

ronments. In particular, we used a compiler technique based

gcc/g++ compiler to implement the hook place holders on

standard Linux 32 bit and 64 bit architectures. In this section

we first show the implementation of the iProbe framework,

and then discuss the implementation of FPerf a tool built using

iProbe.

A. iProbe Framework

As we presented in the previous section, the instrumentation

procedure consists of two stages.

ColdPatch: In the first phase the place holders for hooks are

created in the target binary. We implemented this by compiling

binaries using the -finstrument-functions flag. Note

that this can be done simply by appending this flag to the list

of compiler flags (e.g., CFLAG, CCFLAG, CXXFLAGS) and

most of cases it works without interfering with user code.

In details this compiler option places function calls to

instrumentation functions (_cyg_profile_func_enter

and _cyg_profile_func_exit) after the entry and be-

fore the exit of every function. This includes inline functions

(see second state in Figure 2). Subsequently, our ColdPatcher

uses a binary parser to read through all the target binaries,

and search and replace the instruction offsets containing the

instrumentation calls with NOP instructions (instruction 90).

Symbolic and debug information is read from the target binary

using commonly available objdmp tools; This information

combined with target instruction offsets are used to generate

the probe list with the following information:

<Instr Offset, Entry\Exit Point, Meta-Data>

Hardware

counter

accessapplication

monitoring

iProbe

functions

iProbe shared library

Control daemon

Hardware

event

selection
data

Table writeread

control

blockwrite read

Shared memory

Application

process

Overhead

control

on/off
iProbe HotPatch

Fig. 5. Overview of FPerf : Hardware Event Profiler based on iProbe.

The first field is the instruction offset from the base address,

and the second classifies if the target is an entry or an exit

point of the function. The meta-data here specifies the file,

function name, line number etc.

HotPatching: In the run-time phase, we first use the library

interposition technique, LD_PRELOAD, to preload the instru-

mentation functions in the form of a shared library to the

execution environment. The HotPatcher then uses a command

line interface which interacts with the user and provides the

user an option to input the target process and the probe

list. Next, iProbe collects the base addresses of each shared

library and the binary connected to the target process from

/proc/pid/maps. The load address and offsets from the

probe-list are then used to generate a hash of all possible

probing points. iProbe then use the meta-data information to

provide users a list of target functions and their respective file

information. It takes as input the list of targets and interrupts

the target process. We then use ptrace functionality to

patch the target instructions with calls to our instrumentation

functions, and release the process to execute as normal. The

instrumentation from each function is registered and logged

by a shared memory logger. To avoid any locking overhead,

we have a race free mechanism which utilizes thread local

storage to keep all logs, and a buffered logging mechanism.

B. FPerf: An iProbe Application for Hardware Event Profiling

We used iProbe to build FPerf, an automatic function level

hardware event profiler. FPerf uses iProbe to provide an

automated way to gather hardware performance information

at application function granularity.

Hardware counters provide low-overhead access to a wealth

of detailed performance information related to CPU’s func-

tional units, caches and main memory etc. Using iProbe’s

all function profiling, we capture the hardware performance

counters at the entry and exit of each function. To control

the perturbation on applications and the run-time system,

FPerf also implements a control mechanism to constraint the



function profiling overhead within a budget configured by

users.

Figure 5 summarizes FPerf implementation. It includes a

control daemon and an iProbe shared library with customized

instrumentation functions. The iProbe instrumentation func-

tions access hardware performance counters (using PAPI[17]

in the implementation) at the entry and exit of a selected target

function to get the number of hardware events occurring during

the function call. We define this process as taking one sample.

Each selected function has a budget quota. After taking one

sample, the instrumentation functions decrease the quota for

that application function by one. When its quota reaches zero,

iProbe does not take sample anymore for that function.

The daemon process controls run-time iProbe profiling

through shared memory communication. There are two shared

data structures for this purpose: a shared control block where

the daemon process passes to the iProbe instrumentation

functions the profiling quota information, and a shared data

table where the iProbe instrumentation functions record the

hardware event information for individual function calls. When

iProbe is enabled, i.e., the binary is HotPatched, daemon

periodically collects execution data. We limit the total number

of samples we want to collect in each time interval to restrict

the overhead. This limitation is important because in software

execution, the function call happens very frequently. For

example, even with test data size input, the SPEC benchmarks

generate 50MB-2GB trace files if we log the records for each

function call. Functions that are frequently called will get more

samples. Each selected function cannot take more samples

than its assigned quota. The only exception happens when one

function has never been called before; we assign a minimum

one sample quota for each selection function. And we pick a

function with quota that has not been used up, and decrease

the quota of it by one. The above overhead control algorithm is

a simplified Leaky Bucket algorithm [18] originally for traffic

shaping in networks. Other overhead control algorithms are

also under consideration.

The control daemon also enables/disables the iProbe Hot-

Patching based on user-defined application monitoring rules.

Essentially, this is an external control role on when and what to

trace a target application with iProbe. A full discussion of the

hardware event selection scheme and monitoring rule design

is beyond the scope of this paper.

V. EVALUATION

A. Overhead of ColdPatch

The SPEC INT CPU benchmarks 2006 [19] is a widely

used benchmark in academia, industry and research as relevant

representation of real world applications. We tested iProbe on

8 benchmark applications shown in Figure 6. The first column

shows the execution of a normal binary compiled without

any instrumentation or debug flags. The next column shows

the execution time of the corresponding binary compiled

using the instrumentation flags (Note here the instrumentation

functions are dummy functions). Lastly, we show the overhead

of a ColdPatched iProbe binary with NOP instead of the
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Fig. 6. Overhead of iProbe “ColdPatch Stage” on SPEC CPU 2006 Bench-
marks.

call instruction. Each benchmark application was executed

ten times using SPEC benchmark tools. The overhead for a

ColdPatched binary was found to be less than five percent

for all applications executed, and 0-2 percent for four of the

benchmarks. The overhead here is basically because of the

NOP instructions that are placed in the binary as place-holders

for the HotPatching. In most non-compute intensive applica-

tions (e.g., apache, mysql) we have observed the overhead to

be negligible (less than one percent), with no observable effect

in terms of throughput. Further reduction of the overhead can

be achieved by reducing the scope of the functions which

are prepared for function tracing by iProbe; for example

only using place holders in selected components that need

to be further inspected. Negligible overhead of ColdPatching

process of iProbe shows that applications can be prepared for

instrumentation (HotPatching) without adversly effecting the

usage of the application.

B. Overhead of HotPatching and Scalability Analysis

We compared iProbe with UTrace (User Space Tracing

in SystemTap) [6], and DynInst [8] on a x86 64, dual-core

machine with Ubuntu 12.10 kernel. To test the scalability of

these tools, we designed a micro-benchmark and tested the

overhead for an increasing amount of events instrumented.

We instrumented a dummy application with multiple calls

to an empty function foo, the instrumentation function in

the cases simply increases a global counter for each event

triggered (entry and exit of foo). Tools were written using all

three frameworks to instrument the start and end of the target

function and call the instrumentation function.

Figure 7 shows our results when applying iProbe and

SystemTap on this micro-benchmark. To test the scalability

of our the tools, we have increased the number of calls made

to foo exponentially (increase by multiples of 10). We found

that iProbe scales very well and is able to keep the overhead

to less than five times for millions of events (108) generated

in less than a second (normal execution) for entry as well as

exit of the function. While iProbe executed in 1.5 seconds,

the overhead observed in SystemTap is around 20 minutes

for completion of a subsecond execution, while DynInst takes



Fig. 7. Overhead and Scalability Comparison of iProbe HotPatching vs.
SystemTap vs. DynInst using a Micro-benchmark.

about 25 seconds.

As explained in Section III, tools such as DynInst use

a trampoline mechanism, hence have a minimum of 2 call

instructions for each instrumentation. Additionally SystemTap

uses a context switch to switch to the kernel space over and

above the traditional trampoline mechanism, resulting in the

high overhead, and less scalability observed in our results.

C. Case Study: Hardware Event Profiling

1) Methodology: In this section, we present preliminary

results on FPerf. The purpose of this evaluation is for the

illustration of iProbe as a framework for lightweight dynamic

application profiling. Towards it, we will discuss the results in

the context of two FPerf features in hardware event profiling:

• Instrumentation Automation: FPerf automates hard-

ware event profiling on massive functions in modern

software. This gives a wide and clear view of application

performance behaviors.

• Profiling Automation: FPerf automates the profiling

overhead control. This offers a desired monitoring feature

for SLA-sensitive production systems.

While there are many other important aspects on FPerf to be

evaluated such as hardware event information accuracy and

different overhead control algorithms, we focus on the above

two issues related to iProbe in this paper.

Our testbed setup is described in Table I. The server uses

an Intel CoreTM i5 CPU running at 3.3GHz, and runs Ubuntu

11.10 Linux with 3.0.0-12 kernel. FPerf uses PAPI 5.1.0

for hardware performance counter reading, and the traced

applications are SPEC CPU2006 benchmarks.

TABLE I
EXPERIMENT PLATFORM.

CPU Intel CoreTM i5-2500 CPU 3.3GHz

OS Ubuntu 11.10

Kernel 3.0.0-12

Hardware event
PAPI 5.1.0

access utility

Applications SPEC CPU2006
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Fig. 8. The number of different functions that have been profiled in one
execution.

2) Instrumentation Automation: Existing profilers featuring

hardware events periodically (based on time or events) sample

the system-wide hardware statistics and stitch the hardware

information to running applications (e.g. Intel VTune [20]).

Such sampling based profilers work well to identify and opti-

mize hot code, but with the possibility of missing interesting

application functions yet not very hot. In sharp contrast, FPerf

is based on iProbe framework, it inserts probe functions when

entering and exiting each target function. Therefore, FPerf

can catch all the function calls in application execution. In

Figure 8, we use VTune and FPerf (without budget quota)

to trace SPEC workloads with test data set. VTune uses all

default settings. We find that VTune misses certain functions.

For example, on 453.povray VTune only captures 12 different

functions in one execution. In contrast, FPerf does not misses

any function because it records data at enter/exit of each

function. Actually, there are 280 different functions have

been used in this execution. having the capability to profile

all functions or any subset in the program is desirable. For

example, [21] reported that in deployment environment, non-

hot functions (i.e., functions with low call frequency) might

cause performance bugs as well.

FPerf leverages iProbe’s all-function instrumentation and

functions-selection utility to achieve instrumentation automa-

tion.

3) Profiling Automation: We tested the measured perfor-

mance overhead and the number of captured functions of FPerf

with different overhead budget. As shown in Figure 9, the Y

axis of Figure 9 (a) and (b) is slow-down, which is defined

as the execution time with tracing divided by the execution

time without tracing. The Y axis of Figure 9 (c) and (d) is

the number of profiled functions. The “budget” legend is the
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Fig. 9. Overhead Control and Number of Captured Functions Comparison.

total number of samples we assign FPerf to take. With no

budgeting, FPerf records hardware counter values at every

enter/exit points of each function. From Figure 9 (b) and (d),

no budgeting can capture all the functions but with large 100x-

1000x slow-downs. In contrast, FPerf showed its ability to

control the performance overhead under 5% in Figure 9 (a).

Of course, FPerf had the possibility to miss functions, as when

the budget is too tight, we only sample a limited number of

function enter/exit points.

FPerf leverages iProbe’s scalability property (predictable

low overhead) to achieve the automation on realizing a low

and controllable profiling overhead.

VI. RELATED WORK

Source Code or Compiler Instrumentation Mechanisms:

Source code instrumentation is one of the most widely avail-

able mechanisms for monitoring. In essence, users can insert

debug statements with runtime flags to dump and inspect

program status with varying verbosity levels. The log4j [9]

and log4c frameworks are commonly used libraries to perform

program tracing in many open source projects in the source

code level. Additionally compilers have several inbuilt profil-

ers which can be used along with tools such as gprof and jprof

to gather statistics about program execution. While source

code techniques allow very light weight instrumentation, by

design they are static and can only be changed at the start of

application execution. iProbe on the other hand offers run-time

instrumentation that allows dynamic decisions on tracing with

comparable overhead.

Run-time Instrumentation Mechanisms: There are several

kernel level tracing tools such as DTrace, LTTng, SystemTap

[3], [5], [4] developed by researchers over the years. iProbe

differs from these approaches mainly in two ways: Firstly,

all of these approaches use a technique similar to software

interrupt to switch to kernel space and generate a log event

by overwriting the target instructions. They then execute

the instrumentation code, and either generate a trampoline

mechanism or re-execute the overwritten target instructions

and then jump back to the subsequent instructions. As shown

in Figure.10 this introduces context-switches between user-

space and the kernel, causing needless overhead. iProbe avoids

this overhead by having a completely user-space based design.

Secondly, all these approaches require to perform complex

checks for correctness which can cause unnecessary overhead

at both hotpatching, and when running an instrumented binary.

Fay [22] is a platform-dependent approach which uses the

empty spaces at the start of the functions available in Windows

binaries for instrumentation. To ensure the capture of the entry

and exit of functions, Fay calls the target function within its

instrumentation thereby introducing an extra stack frame for

each target instrumentation. This operation is similar to a mini-

trampoline and hence incurs an overhead. Fay logs function

execution in the kernel space and hence also has a context-

switch overhead. iProbe avoids such overhead by introducing

markers at the beginning and end of each function using a

Another well known tool is DynInst[8]. This tool provides a

rich dynamic instrumentation capability and has pure back box

solution towards instrumentation of any application. However,

as shown in Figure.10 it is also based on traditional tram-

poline mechanisms, and induces a high overhead becauses of

unnecessary jump instructions. Additionally it can have higher

overhead because of complex security checks. Other similar



Fig. 10. Advantages of iProbe over existing monitoring frameworks DTrace/SystemTap and DynInst

trampoline based tools like kaho and pannus[14], [13] have

also been proposed, but they focus more towards patching

binaries to add fixes to correct a bug.

Debuggers: Instrumentation is a commonly used technique

in debugging. Many debuggers such as gdb [2] and Eclipse

have breakpoints and watchpoints which can stop the exe-

cution of programs and inspect program conditions. These

features are based on various techniques including ptrace

and hardware debugging support (single step mode and debug

registers). While they provide such powerful instrumentation

capabilities, there are in general not adequate for beyond the

debugging purposes due to overwhelming overhead.

Dynamic Translation Tools: Software engineering commu-

nities have been using dynamic translation tools such as Pin

[1] and Valgrind [23] to inspect program characteristics. These

tools dynamically translate program code before execution and

allow users to insert custom instrumentation code flexibly.

They are capable to instrument non-debug binaries and provide

versatile tools such as memory checkers and program profilers.

However, similar to debuggers, they are generally considered

as debugging tools and their overhead is significantly higher

than runtime tracers.

VII. CONCLUSION

Flexibility and performance have been two conflicting goals

for the design of dynamic instrumentation tools. iProbe offers

a solution to this problem by using a two-stage process that

offloads much of the complexity involved in run-time instru-

mentation to an offline stage. It provides a dynamic application

profiling framework to allow for easy and pervasive instru-

mentation of application functions and selective activation. We

presented in the evaluation that iProbe is significantly faster

than existing state-of-the-art tools, and scales well in large

application software.
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