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Abstract—Operating system kernel-level tracers are popu-
larly used in the post-development stage by black-box ap-
proaches. By inferring service request processing paths from
kernel events, these approaches enabled system diagnosis and
performance management that are application-logic aware.
However, asynchronous communications and multi-threading
behaviors make request path patterns dynamic on the kernel
event level; this causes previous methods to focus on either soft-
ware instrumentation techniques or better statistical inference
models.

In this paper, we propose a novel learning based approach
called PInfer that infers request processing path patterns auto-
matically with high precision. PInfer first learns dynamic event
patterns of inter-thread and intra-thread service processing
from the training data of sequential requests. On the testing
data containing concurrent requests, PInfer infers individual
request processing paths by effectively solving a graph match-
ing problem and a generalized assignment problem based on
the learned patterns. We have implemented our approach in
a proprietary system performance diagnosis tool, and present
performance results on 40 sets of kernel event traces. PInfer
achieves on average 65% precision and 85% recall for
profiling concurrent request processing paths.

Keywords-request processing path; dynamic event patterns;
learning based approach;

I. INTRODUCTION

In large-scale production cloud computing infrastructures,
system diagnosis (e.g., investigation of resource and perfor-
mance issues) is a realistic and important problem due to
frequent incidents at their scales. Diagnosis with low-level
system events (e.g., system calls) has been studied in many
approaches [1], [2], [3], [4], [5], [6], [7], [8], [9]. These
are black-box approaches which do not rely on application
software’s internal knowledge, and are desirable for service
operators. They can work without source code at hand, look
into all components with a system-wide view, and pinpoint
the component(s) responsible for the issues.

To enable diagnosis of end-to-end system behaviors, a
necessary feature is to model its high-level behavior based
on low level system events. Networked service systems
process a service request from users and we use the term, a
request-processing path [6], to represent the series of system
activitie across all necessary components. More precisely
it is defined as all system events, including network and
thread activities, starting from the user request received at
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Figure 1. A request processing path example going through five distributed
application threads in a multi-tier service system.

Table I
MULTIPLE REQUEST PROCESSING PATTERN CONFIGURATIONS

SUPPORTED IN Jetty [10] APPLICATION SERVER.

1 Synchronous request.
2 Asynchronous request.
3 Asynchronous request with new thread created.
4 Asynchronous request without return.
5 Asynchronous request with new thread and without return.

the front-end, until the final response sent back to the user.
Figure 1 shows a request-processing path going through
multiple components; it starts from a web server thread
(left most) which receives an external client request; it
then goes through an acceptor thread, a selector thread,
and a scheduler thread in the application server, before the
request is dispatched to a worker thread; lastly, the request
processing path finishes when the web server thread replies
to the client after exchanging a few messages with the
application server worker thread.

It is challenging to profile concurrent request paths in
modern service systems with complex asynchronous and
multi-threading behaviors [6]. Specifically, those behaviors
can be summarized as follows:



Figure 2. PInfer scheme. (1) In the training phase the communication
processes are learned. (2) In the testing (inference) phase, we generate
communication paths and then generate request processing paths hierarchi-
cally. The training data is a set of sequential request paths without overlaps
while the testing data contains a lot of concurrent requests, whose paths
are interleaved with each other.

• Cooperative behavior: a request is processed by more
than one thread cooperatively. For instance, in Figure 1,
three threads work together to accept and schedule a
request before another worker thread performs sending
and receiving packets;

• Collective behavior: in a threading pool model, there
are a group of threads/processes taking a similar role
and handling requests alternatively in a pool. In Fig-
ure 1, the pool of worker threads in an event-driven
web server (such as nginx [11]) is such an example.

These multi-threading behaviors make request paths dy-
namic in asynchronous multi-threaded server systems as
a request path may involve multiple threads in a non-
deterministic way; due to the lack of application level
request information in kernel events, the transitions between
those threads during the request handling are usually hard
to be traced precisely without using application-level in-
strumentation tracing. Besides, many service systems have
multiple configuration options, each of which will define a
different request processing pattern on kernel event level. Ta-
ble I shows an example of the five configurations supported
in Jetty [10], a popular open-source application server.

In this paper, we take a learning based approach, called
PInfer, to automatically learn and infer individual request

processing paths from massive amount of OS kernel events
containing concurrent requests. The principle of PInfer is
that although request paths are various, the communication
processes between threads in these paths have stable pair-
wise patterns. Inspired by this fact, PInfer divides original
inference problem into two phases: inferring communication
processes in request paths, and then generating request paths
according to the communication processes. This strategy
simplifies the inference problem greatly. Note the commu-
nication event definitions are in terms of pairs, and are not
limited to network events; the details are in Section III.

As shown in Figure 2, PInfer has two stages. (1) In
the training stage, event traces of sequential requests are
collected, and PInfer learns the pairwise patterns of com-
munication processes from the traces. (2) In the testing
(inference) stage with event traces of concurrent requests,
PInfer infers end-to-end communication paths by solving
a generalized assignment problem based on the learned
patterns. The request processing paths can be generated
based on the inferred communication paths. The inferring
communication path process is composed of three steps:
communication pair detection, alignment, and stitching. In
these three steps PInfer solves two graph-based problems:
the detection and the alignment of communication pair
is formulated into a graph matching problem, while the
stitching of communication pair can be achieved by solving
a generalized assignment problem on a bipartite graph.

The contributions of this paper are summarized as follows:

• A new learning based approach is proposed for solv-
ing the end-to-end request profiling problem. Previous
methods focused on either application instrumentation
techniques or developing better statistical inference
models. We instead take a very different machine
learning methodology to radically simplify the problem.

• We implemented PInfer in a proprietary system per-
formance diagnosis tool named called CLUE [12],
applicable to IT systems in multi-core servers on major
OS platforms including Linux (Redhat, Fedora), Unix
(HP-UX), and Windows (Windows Server 2008).

• We conducted an extensive evaluation of PInfer on 40
sets of kernel event traces collected from a multi-tier
service system with different service workloads, system
setups, and request pattern configurations. PInfer can
achieve on average 65% precision and 85% recall on
profiling concurrent request processing paths.

The rest of the paper is organized as follows. In Section II
we present the related work. Section III describes back-
ground of our work and notations of terms. Section IV and V
present PInfer’s communication process learning algorithm
and request processing path inference algorithm. Section VI
gives the analysis of PInfer’s proposed algorithms. We
present the evaluation results in Section VII, and conclude
this paper in Section VIII.



II. RELATED WORK

Several black-box approaches target capturing the path
and the timing of an individual service request across the
components of a multi-tiered system. Approaches such as
Project5 [13] and WAP5 [14] accept imprecision of proba-
bilistic correlations. Project5 proposes a nesting algorithm
which assumes RPC-style (call-returns) communications.
WAP5 infers causal paths for wide-area systems in a per-
process granularity using library interposition.

Precise black-box approaches such as BorderPatrol [15],
vPath [6], and PreciseTracer [16] build request traces for
specific protocols or application threading models. Border-
Patrol isolates and schedules events or requests at the proto-
col level to precisely track service requests with the explicit
knowledge of diverse protocols used by multi-tier services.
For commercial components or heterogeneous middleware,
BorderPatrol needs to provide customized protocol proces-
sors and requires specialized knowledge than pure black-box
approaches. The vPath system continuously logs in a virtual
machine monitor regarding which thread performs commu-
nication system call over which TCP connection, and makes
assumptions about the threading model of distributed system
such as synchronous communication among components of
the system and a single thread handling all the messages
common to one request. PreciseTracer [16] offers an online
request tracing system. It first reconstructs network commu-
nication events into causal paths, then classifies these causal
paths into different patterns according to their shapes. Its
final presentation is an macro-level abstraction, dominated
causal path patterns, to represent repeatedly executed causal
paths that account for significant fractions. All these black-
box approaches take only a small subset of system/network
events into their analysis, and rely on explicit request-reply
communication patterns.

In networking area there are studies on network event
sequence analysis and applications. For example, Meng
et al [17] proposed a novel approach that automatically
captures the behaviors hidden in massive event sequences
using a mixture Markov Chain model. While those ap-
proaches identify significant patterns such as flows and host
communication patterns, their outputs are statistical models
and do not address the full path inference problem addressed
in this paper.

III. BACKGROUND AND NOTATIONS

A. Operating System Kernel Events

As a core component of a computer system, an OS kernel
provides the lowest-level resource abstraction layer for appli-
cation software. Typical examples of kernel events include
system calls from processes, scheduling events, interrupts,
I/O operations, and locking operations.

In this paper, we denote a kernel event as e = (t, v),
where t is the time stamp of the event e, the vector v

Table II
LIST OF COMMUNICATION PAIRS.

Intra-Communication Event Pair
1 〈FUTEX,PRESUME〉
2 〈CLONE,PRESUME〉
3 〈UNIX STREAM SEND,UNIX STREAM RECV〉
4 〈PIPEWIRTE,PIPEREAD〉

Inter-Communication Event Pair
1 〈TCP CONNECT,TCP ACCEPT〉
2 〈TCP SEND,TCP RECV〉
3 〈TCP CLOSE,TCP RECV〉
4 〈TCP SHUTDOWN,TCP RECV〉

Starting Event of a Request
1 〈−,TCP RECV〉 with an external destination IP

Ending Event of a Request
1 〈TCP SEND,−〉 with an external destination IP

represents the parameters of the event, including source and
destination IP, thread ID, CPU ID, and port number, etc.

B. Communication Event Pairs

We can categorize various kernel events into two classes:
the communication events and the rest. An important prop-
erty of communication events is that they always appear in
pairs. We denote a communication pair as C = 〈eb, es〉,
where eb and es are the starting communication event and
the ending communication event of the pair, respectively.
we further categorize communication pairs into two classes:
intra-communication pairs, the pairs in which eb and es

are generated in the same machine (e.g., shared mem-
ory based inter-process communication events), and inter-
communication pairs such as TCP network events.

Table II lists a set of example communication pairs.
For example, a FUTEX unlocking system call by a thread
and the caused PRESUME context switch event on another
thread waiting for the unlock forms an intra-communication
pair defined in our scheme; a pair of TCP CONNECT and
TCP ACCEPT network events for a TCP connection setup
is another inter-communication pair defined in our scheme.

C. Request Processing Paths

Denote a sequence of kernel events triggered by K
requests as S = {e1, e2, ..., eN}. We aim to infer a request
processing path for each request and decouple the sequences
of kernel events from S that correspond to different requests;
a kernel event sequence for a request is a request processing
path. For the kth request, its request processing path is
denoted as Pk = {ek1 , ek2 , ..., ekNk

}, which contains the whole
process of the request. Furthermore, the communication
pairs within a request processing path construct a commu-
nication path, denoted as Ck = {Ck

i }
Mk
i=1. Here Ck

i is the
ith communication pair in the kth request processing path.
Figure 1 illustrates a typical request processing path, where
a communication pair consists of two events connected by



arrows crossing threads and the rest events are represented
as green bars in threads.

IV. PINFER LEARNING SCHEME

In the learning phase, PInfer models communication path
patterns in the processing paths of sequential requests.
That includes discovering the starting and ending events
of request processing paths, detecting communication event
pairs, and learning the pairwise relationships among com-
munication event pairs.

A. Communication Event Pair Detection and Time Stamp
Alignment

For a request processing path, we assume the kernel
event types of starting and ending communication events are
defined by domain knowledge. Typically, those events are
the network events for the requests and replies to customers
outside of the traced system.

For the rest of communication events in the path, given a
starting event eb = (tb, vb), we can find a candidate ending
event es = (ts, vs) in the time window (tb−∆t1, t

b +∆t2]
by matching their parameters vb and vs. We set ∆t1 = 0 to
detect intra-communication event pairs so that it guarantees
the causality between intra-communication events (i.e., the
time stamp of an ending event should be later than that
of its paring starting event). For inter-communication event
pairs, its causality is influenced by time alignment, so we
set ∆t1 > 0 to allow asynchronization among different
machines.

The detected inter-communication event pairs can help
align event time stamps across different machines. This
is especially helpful in today’s data centers with network
latency at sub-milliseconds level [18]. In a system of D
machines {Md}Dd=1, for each pair of machines Md and Md′

(d 6= d′), ideally the clock of Md should be synchronized
with that of Md′ via the following linear model:

td′ = add′td + bdd′ (1)

where td and td′ are the time clock of Md and Md′ ,
respectively, add′ and bdd′ are the frequency shift and the
time shift of Md with respect to Md′ . Suppose that there
are Ndd′ inter-communication event pairs between Md and
Md′ and the starting events are on Md and the ending events
are on Md′ . We can learn the clock frequency shift and
the time shift by minimizing the time interval between the
starting and the ending events.

In the event pair detection step, it is possible to find
multiple ending events corresponding to one starting event.
A greedy strategy to solve this issue is to select the ending
event with the closest time stamp. However, the notion
of ”closest” relies on clock synchronization. On the other
hand, the time stamp alignment depends on the correct
match of communication event pairs. In addition, detecting
communication event pairs one by one will increase the

Figure 3. The graph matching model for communication event pair
detection and alignment. The starting events of inter-communication event
pairs and the candidate ending events (red points) construct two graphs,
respectively. The blue dot lines correspond to potential connections between
events, whose weights are errors of time alignment. The connections
(inter-communication event pairs) are achieved via graph matching, which
minimize the errors of time alignment.

risk of error propagation since the detection of a wrong
communication event pair will impact the detection of other
pairs in the consecutive steps.

B. A Joint Graph Matching Solution

Instead of an iterative method, we propose to solve
the communication event pair detection and time stamp
alignment problems simultaneously. In specific, we propose
a bipartite graph matching scheme. As Figure 3 shows, for
each starting event on machine Md, we can find multiple
candidates ending events from the event sequence on Md′ .
We connect the starting events ebn and their corresponding
ending event candidates esn with a directed edge with weight
(add′tbn + bdd′ − tsn)2. (add′ and bdd′ can be learned simul-
taneously, which will be discussed later).

Denote the set of starting events on machine Md as
{em}Mm=1 with time stamps {tm}Mm=1, and the set of ending
events candidates on Md′ as {en}Nn=1 with time stamps
{tn}Nn=1. The connection between communication events em
and en is represented by a binary indicator as follows.

xmn =

{
1, 〈em, en〉 is a pair,
0, otherwise.

(2)

We propose to conduct communication event pair de-
tection and time alignment simultaneously by solving the
following optimization problem.

min
xmn,add′ ,bdd′

M∑
m=1

N∑
n=1

xmn(tn − add′tm − bdd′)2,

s.t. xmn ∈ {0, 1},
N∑

n=1

xmn = 1, m = 1, ..,M,

M∑
m=1

xmn ≤ 1, n = 1, ..., N,

xmn(add′tm + bdd′ − tn) ≤ 0. (3)



The objective function in Equation (3) represents the
weighted sum of matching errors between all starting events
and their true corresponding ending events. The first con-
straint on xmn corresponds to the definition in Equation (2).
The second constraint ensures that each starting event is con-
nected to exactly one ending event, given that the connection
indicator is binary. The third constraint ensures that each
ending event candidate is connected to at most one starting
event. The last constraint guarantees the causality relation
among communication events such that the ending events
appear after their corresponding starting events.

The problem in Equation (3) is a special example of graph
matching problem, which can be solved by iterative closest
point (ICP) method [19], [20], and alternating minimization
approaches. Algorithm 1 describes the details of the solution.

Algorithm 1 Graph-based Communication Event Pair De-
tection and Time Alignment
Input: Event sequence E from a system having D machines
{Md}Dd=1, ∆t1, ∆t2.

Output: Aligned event sequences and communication event pairs.
for d = 2 : D do

Find communication starting events {en}Nn=1 in Md based
on domain knowledge.

for d′ = 1 : d− 1 do
Find ending event candidates s {em}Mm=1 in Md′ based

on domain knowledge.
add′ = 1, bdd′ = 0.
repeat

Fix add′ , bdd′ and solve (3) for xmn.
Fix xmn and solve (3) for add′ , bdd′ .

until convergence
For all the events on Md′ , align their time stamps by

t := add′t + bdd′

Detect inter- and intra-communication event pairs with
time stamps aligned.

end for
end for

The domain knowledge described in Algorithm 1 is on
the parameter matching conditions between communication
event pairs; these conditions reflect the temporal order of the
patterns of pairs, such as an invoking event (e.g., connect)
preceding an invoked event (e.g., accept). A list of the
conditions is as follows:

• For SETRQ (or CREATE), find PRESUME having
larger time stamp and same source IP and thread ID.

• For UNIX STREAM RECV (or PIPEWRITE), find
UNIX STREAM SEND (or PIPEWREAD) having
larger time stamp and same source IP, thread ID, and
data size.

• For TCP CONNECT (or TCP SEND), find
TCP ACCEPT (or TCP RECV) satisfying (1)
its source IP and destination IP are exchanged; (2) its
source port and destination port are exchanged.

Figure 4. Illustration of parameter feature vector. In this case, the
parameter domains include a source IP, a destination IP, a port number
pair, a thread ID and a CPU ID.

• For TCP SHUTDOWN (or TCP CLOSE), find
TCP RECV satisfying (1) its source IP and destination
IP are exchanged; (2) its source port and destination
port are exchanged; (3) its data size is zero.

C. Learning Transition Processes of Communication Event
Pairs

The rationale behind PInfer’s learning approach is that
although there can be various request paths, the pairwise
relations between communication event pairs is relatively
stable. The reason for the stability is that such com-
munication events have to follow the specific protocols
and threading models configured in the system (e.g., the
TCP protocol). For example, after an external TCP RECV
event is committed, the following communication event pair
〈TCP CONNECT,TCP ACCEPT〉 must follow. Therefore,
given an event trace corresponding to a series of sequential
requests, PInfer learns the transition process of communica-
tion event pairs by identifying the frequent event pair-wise
transition patterns.

Specifically, we model the transition process of com-
munication event pairs as a Markov process. Given the
aligned communication event pairs detected from training
sequence, we can estimate the transition probability among
communication event pairs statistically, e.g., the 1st order
transition probability pc(Ci|Cj), the 2nd order transition
probability pc(Ci|Cj → Ck), and so on. In the Markov
process, each communication event pair is considered as a
state, and we need to learn the transition probabilities among
the states so as to infer the process. Besides the transition
processes, the parameter of event also provides us with
significant information for inferring request path. In addition,
the parameters of the events also provide useful information
for inferring request paths. As a matter of fact, the transition
process of communication event pairs is generally associated
with the change of event parameters. Different from the
types of communication event pairs, the values of parameters
are numerous and random (e.g., both dynamic allocated port
number, the ID of thread, etc). To capture the parameter
changes so as to infer the transition process, we propose an
effective feature extraction method as illustrated in Fig. 4.

Given adjacent communication event pairs {Ci, Ci+1}, we
compare the parameter of Ci’s ending event, vs

i with that



of Ci+1’s starting event, vb
i+1. If vci and vbi+1 correspond

to S domains of system information (i.e., v = {v(s)}Ss=1,
we define a binary feature vector f ∈ {0, 1}S as follows to
capture the parameter change from vci to vbi+1) where f(s)
represents the change on the s-th domain.

f(s) =

{
0, vsi (s) = vbi+1(s),

1, otherwise.
(4)

The feature vector f maps numerous parameter changes
into a finite state space. As a result, given learned commu-
nication event pairs, we can calculate the conditional prob-
ability of parameters given the transition of communication
event pairs, denoted as pf (f |Ci → Ci+1).

The transition probability of communication event pairs
pc and the conditional probability of parameters pf provide
us with significant prior knowledge for generating communi-
cation paths and the corresponding request processing paths,
which will be shown in the next Section.

V. PINFER INFERENCE SCHEME

Given the communication process models learned from
Section IV, we formulate a generalized graph assignment
problem for decoupling interleaving request processing paths
on a set of testing data containing concurrent requests, and
design an efficient algorithm to solve it.

A. Graph-based Communication Path Generation

For an event sequence that processes K requests, assume
we can detect N communication pairs {Ci}Ni=1 and K
the starting and ending events for the requests, denoted
as {Cb

k, Cs
k}Kk=1. We aim to generate K communication

paths starting from ebk and ending at esk respectively. The
most significant challenge in identifying such communica-
tion paths is that when the requests are concurrent, their
communication paths are interleaved with each other and
thus it is non-trivial to decouple them. We propose a graph-
based heuristic method to identify the communication paths
in a greedy and sequential fashion. In specific, we assign
communication pairs to communication paths step by step.
At each step, the communication pairs are assigned based
on the solution of a generalized assignment problem.

Specifically, given current partially identified communi-
cation paths, we first find some communication paths that
could possibly be the next pairs in the paths. Given adjacent
communication pairs {Ci, Ci+1}, where Ci = 〈ebi esi 〉, and
Ci+1 = 〈ebi+1 esi+1〉, there are three matching patterns:
• vsi of esi match vbi+1 of ebi+1, that is Ci+1 starts after

Ci ends.
• vsi of esi match vsi+1 of esi+1, that is Ci+1 ends after Ci

ends.
• vbi of ebi match vbi+1 of ebi+1, that is Ci+1 starts after

Ci starts.

Figure 5. Generalized assignment problem for inferring communication
path. The squares are current last pairs of communication paths, and the
circles are candidate following pairs. The purple circles represents the
candidates shared by two paths.

Those patterns assure the context relevance (e.g., the same
TCP connection or thread context) between adjacent com-
munication pairs.

However, expanding processing paths solely based on the
matching between consecutive pairs (i.e., 1st-order informa-
tion) is highly subject to error propagation. This is due to
the fact that the ordering of communication pairs recorded
by the system can be different from their logical and true
ordering. To alleviate the fragility from only the 1st-order
information, we propose a high-order (e.g., 2nd-order) path
expansion approach as follows. That is, a pair is assigned
to a path as long as it can be connected with either Ci−1 or
Ci based on parameter matching. When there are multiple
concurrent request paths, different paths may share same
next communication pair candidates. In this case, we need
to well establish one-to-one assignments between multiple
paths and next pair candidates. If the communication path
is of length L, we need to repeat the above steps L times,
which can be time consuming. In addition, global optimality
for all concurrent requests requires enumeration for all
possible paths, which may cause scalability issues for a large
system with many concurrent requests. On the other hand,
expanding communication paths sequentially (i.e., locally
optimally) may lead to a cascading of inference errors. If
a communication pair is assigned to a wrong path, this error
would impact all the following inference along the line.

To achieve a balance among robustness, scalability and
error propagation, we propose a locally optimal solution.
For the k-th communication path, denote its current last
pair and the candidate set of the next pairs as sk and Dk,
respectively. It is possible that Dk ∩ Dk′ 6= ∅, k 6= k′. We
consider S = {sk}Kk=1 as a source set and D = ∪Kk=1Dk as
a destination set. These two sets construct a bipartite graph,
where the weight of edge connecting the source node s ∈ S
with the destination node d ∈ D is denoted as wsd. Then we
construct a bipartite graph over these two sets by connecting
each source node s ∈ S with each destination node d ∈ D



with an edge with weight wsd. Taking advantages of the
transition process learned before, we can define wsd as
where the weight wsd is defined as follows,

wsd = pc(d|s)pf (fsd|s→ d) (5)

when the 1st-order transition probability is applied, or

wsd = pc(d|s′ → s)pf (fsd|s→ d), (6)

when the 2nd-order transition probability is applied.
The inference of the following pairs using the bipartite

graph is again an example of a generalized assignment
problem [21], [22], which can be addressed by solving the
following optimization problem.

max
xsd

|S|∑
s=1

|D|∑
d=1

wsdxsd,

s.t. xsd ∈ {0, 1},
|D|∑
d=1

xsd = 1, s = 1, .., |S|,

|S|∑
s=1

xsd ≤ 1, d = 1, .., |D|. (7)

Similarly to that in (3), the first constraint ensures binary
connection indicator. The second constraint ensures that each
pair connects exactly one next pair. The third constraint en-
sures that each candidate connects at most one previous pair.
The objective function can be interpreted as to maximize
the joint transition probability of communication pairs and
their parameters. The difference is that in (7), it does not
need to estimate the transformation between the source set
and the destination set. The problem in Equation (7) can be
solved using the approximate algorithms proposed in [21],
[22]. Therefore, the proposed graph-based communication
path generation is presented in Algorithm 2.

Algorithm 2 Communication Path Identification Algorithm
Input: Sequence of communication pairs {Ci}Ni=1, the starting

and ending events {Cb
k, C

e
k}Kk=1, event’s transition probability

pe and parameter’s conditional probability pf .
Output: The communication path {Pk}Kk=1.

for k = 1 : K do
Initialize Pk = {Cb

k, C
s
k}.

repeat
Candidate selection:
Find a candidate set Dk for the current pair sk from the

interval between sk and Ce
k .

if Dk 6= ∅ then
Solve Eq. (7) to obtain the following pairs {dk}Kk=1.
sk = dk, Pk = Pk ∪ {sk}.

end if
until Dk = ∅

end for

B. Request Processing Path Identification

After identifying a communication path, the correspond-
ing request processing path can be generated by filling ad-
jacent communication events in each thread on the commu-
nication path with the rest of system kernel events triggered
by that thread.

VI. DISCUSSIONS

A. Computational Complexity

In PInfer, both the communication pair detection and
time alignment algorithm (Algorithm 1) and the commu-
nication path generation algorithm (Algorithm 2) are graph-
based. Specifically, Algorithm 1 solves a constrained least
squares problem and a binary programming alternatively.
Algorithm 2 solves generalized assignment problems. Both
of these two algorithms address NP-hard problems, and thus
we solve them approximately.

Algorithm 1 is similar to the ICP algorithm, which
selects suitable correspondences for communication events
and learns the transitions between them for arbitrary two
machines. The difference between our method and tradi-
tional ICP has two folds: (1) we consider the causality within
communication pairs when learning transformation; (2) we
apply local search window for each event, as Fast ICP [23]
does. The computational complexity of Algorithm 1 in worst
case is O(D2N2), where D is the number of machines
and N is the number of inter-communication pairs in the
event sequence. When we align the time clocks of machine
d and d + 1 sequentially, d = 1, ..., D, and apply the local
search window scheme, the computational complexity can
be reduced to O(DN).

Algorithm 2 solves L generalized assignment problems
(GAP) for the event sequence of K paths, with maximum
length L. We apply the efficient approximate algorithm
in [21] to solve each GAP, which solve K knapsack prob-
lems [24] repeatedly. Suppose that there are |D| communi-
cation pairs waiting for assignment. For each path, the com-
putational complexity of knapsack problem is O(f(|D|)).
Thus, the computational complexity of Algorithm 2 is
O(LK(f(|D|) + |D|)).

It should be noted that Algorithm 2 generates com-
munication paths in parallel; after solving GAP, K pairs
are assigned to K paths simultaneously. Compared with
the method that generates paths sequentially through beam
search [25], our method can suppress the cascading effect
of error greatly, which will be demonstrated in Section VII.

B. Significance of Domain Knowledge

The event sequences from the target networked system
have to always follow the rule of the system. Therefore, a
prior domain knowledge of the system plays an important
role in understanding the sequences. For example, the event
parameter matching is critical for detecting the next com-
munication pairs in a communication path, which heavily



Table III
THE SYSTEM CONFIGURATIONS.

x Workload pattern
1 Overload of CPU (CPU).
2 A certain period of time to sleep (SLEEP).
3 Read the file from disk (IOREAD).
4 Create a new file to disk (IOWRITE).
5 Receive the results of single response record (SELECT1).
6 Do communication and OUTER external system (OUTER).
7 Receive the results of multiple response records (SELECT2).
8 Lock the shared resources during processing (LOCK).
y Request processing pattern
1 Synchronous request.
2 Asynchronous request.
3 Asynchronous request with new thread created.
4 Asynchronous request without return.
5 Asynchronous request with new thread and without return.

relies on the understanding of the event parameters based on
domain knowledge, and the feature dimension of f depends
on the system. In addition, the parameter matching criteria
are determined by the domain knowledge on kernel events.

VII. EVALUATION

A. Implementation

We implemented PInfer as a module of a NEC system
performance diagnosis tool (a.k.a. CLUE) [12], which is a
kernel event tracing and analysis framework that supports
various monitoring platforms such as Linux, HP-UX, ARM
Linux, and Windows.

B. Traces

The test traces were collected from a service system of
three tiers: a nginx [11] event-driven web server, a Jetty [10]
application server, and a MySQL [26] database server. Kernel
event traces were collected under multiple workload patterns
and request processing patterns. A kernel event data set is
presented as a form, “x − y − z” where x, y, z are the
notation presented in Table III. x = 1, .., 8, which represents
8 different workload patterns of system listed in Table. III.
y = 1, .., 5, which represents 5 request processing patterns
listed in Table III. And z = a, b, which represents 2 request
patterns: (a) sequential request paths and (b) concurrent
request paths. In evaluation, we use two sets of trace event
sequences for training and testing where each set contains
10-12 requests. The training set contains sequential requests
represented as the x−y−a patterns. The event sequences in
the testing set can be concurrent. Therefore, the sequences
in this set is presented as the x− y − b pattern.

The kernel events in our data set contain the following
parameters: the IP of the machine generating the event
(Source IP); the ID of the thread (or process) generating
the event (Thread ID); the index of the CPU generating
the event (CPU ID). For the events related to communi-
cation, additional parameter domains are attached: the IP

of the target machine (Destination IP); the source and the
destination port number (Port); data size. Except the domain
of data size, the dimension of feature vector f is 5 and the
number of feature states is 25 = 32.

C. Methods

We present the evaluation results using the comparison of
prior work and several design choices of our method. For
each one’s notation, we use several terms.
• T: using a training set
• 1C and 2C: the 1st and 2nd order communication pair

transition probability respectively
• F: parameter conditional probability
• P: parallel inference of communication paths, where

all paths are updated simultaneously by solving a
generalized assignment problem.

The list of compared methods are as follows: The average
precision and recall are presented in Table IV and V.
• NoTrain: an end-to-end request path profiling method

we implemented in the earlier version of CLUE [12].
It requires no training, generating communication paths
via stitching communication pairs with matched param-
eters based on domain knowledge.

• T1C-S: a method learning the 1st order pair transition
probability and inferring path sequentially via beam
search [25].

• T1C-P: the PInfer method learning the 1st order pair
transition probability and inferring paths simultane-
ously.

• T2C-P: the PInfer method learning the 2nd order pair
transition probability and inferring paths simultane-
ously.

• T2CF-P: the PInfer method learning the 2nd order pair
transition probability and the conditional probability of
feature, and then inferring paths simultaneously.

Here we use precision and recall of inference results to
evaluate the performance of various methods. Specifically,
we call the events being inferred correctly as positive events.
The precision is defined as the proportion of positive events
in the inferred request processing paths, and the recall is
defined as the proportion of positive events in the actual re-
quest processing paths. The precision measures the accuracy
of inferred paths while the recall measures the completeness
of inferred paths.

D. Results

For each workload pattern, the average inference results
of concurrent request processing paths are presented in
Tables IV and V. We can find that merely using domain
knowledge without a training set cannot deal with concurrent
request processing paths accurately; the highly interleaved
paths will lead multiple events with matched parameters
that appear together in a short time. Stitching matched



Table IV
RESULTS OF AVERAGED PRECISION.

Workload NoTrain T1C-S T1C-P T2C-P T2CF-P
CPU 0.6051 0.6547 0.6331 0.6541 0.6780
SLEEP 0.6035 0.6572 0.6423 0.6909 0.6682
IOREAD 0.5559 0.6697 0.6433 0.6742 0.6647
IOWRITE 0.5888 0.6703 0.6349 0.6807 0.6507
SELECT1 0.5082 0.4861 0.5014 0.5463 0.5583
OUTER 0.5743 0.5359 0.6244 0.6105 0.6583
SELECT2 0.5262 0.4750 0.5576 0.5840 0.6016
LOCK 0.5905 0.6563 0.6549 0.6953 0.6815
Average 0.5691 0.6006 0.6115 0.6420 0.6452

Table V
RESULTS OF AVERAGED RECALL.

Workload NoTrain T1C-S T1C-P T2C-P T2CF-P
CPU 0.6932 0.8511 0.8364 0.8364 0.8614
SLEEP 0.7557 0.8875 0.8693 0.8489 0.8682
IOREAD 0.6806 0.8290 0.8426 0.8743 0.8801
IOWRITE 0.6782 0.8602 0.8614 0.8559 0.8636
SELECT1 0.7063 0.7916 0.7925 0.7854 0.8008
OUTER 0.7160 0.8751 0.8338 0.8528 0.8838
SELECT2 0.7075 0.8097 0.7598 0.7758 0.7933
LOCK 0.7432 0.8398 0.8034 0.8239 0.8545
Average 0.7101 0.8430 0.8249 0.8317 0.8507

communication pairs only based on “closest” criterion and
generating request processing paths accordingly introduced
many errors as well. The data show that by introducing the
event transition probability into the inference, the result has
been improved significantly. However, if the inference is
sequential, the inference error will be cascading — the error
of the inference for a previous path will affect the errors
in the following paths. By applying the 2nd order transition
probability and the parallel inference method, the robustness
and the accuracy of the inference are further improved.
Additionally, taking the parameter conditional probability
into consideration, the inference accuracy is slightly better.
It means that the parameter conditional probability further
provides us with useful information. PInfer achieves on
average 65% precision and 85% recall.

The experiment results demonstrate that as more prior
knowledge is introduced in the inference, the result becomes
better. As a result, our method achieves superior perfor-
mance in all cases. The high precision means that there are
few false positive errors in our result while the high recall
means that our inference result covers most of events for
real paths. To further verify the advantage of our method,
Table VI visualizes the inference results of various methods
for a typical request processing path. The “–” indicates the
false negative events (belonging to the path but not inferred)
while the red events indicate the false positive events (not
belonging to the path but inferred). Compared with the prior
work, our method attains a path with fewer inference errors
indeed.

Figure 6. The precision and recall of 14 inferred paths w.r.t. the index of
request.

E. Discussions

Although our method achieves encouraging results for
inferring request processing paths, it has some limitations.
First, our method requires a training set consisting of sequen-
tial request processing paths to learn the transition process
of communication paths.

Second, although our path generation algorithm sup-
presses the cascading effects of inference errors, it does not
essentially solve this problem. Because our algorithm adds
communication pairs into the inference of the paths step-by-
step, the final inferred paths are local optimal being affected
by the propagation of inference errors.

We further give data in Figure 6 to illustrate this phe-
nomenon of error propagation. For a sequence having 14
concurrent requests, their inferred paths are sorted according
to their starting time. In all methods, the inferred results
of the following requests are generally worse than those of
the previous ones, which means that the errors of previous
inference results influence the following inference.

VIII. CONCLUSION

In this paper, we present PInfer, a novel method to
infer concurrent request processing paths with system event
traces. The method combines domain knowledge and the
learned behavior model from training data, and enables
inferring interleaving request processing paths on asyn-
chronous and configurable multi-threading service systems.
We implemented and tested it on a wide range of request
processing patterns on a multi-tiered service system, and the
results showed the effectiveness and practicality of PInfer.
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