
+Junghwan Rhee, *Ryan Riley, +Dongyan Xu, **Xuxian Jiang

+ Department of Computer Science, Purdue University

* Department of Computer Science and Engineering, Qatar University

** Department of Computer Science, North Carolina State University

1



 Background

 Allocation-driven mapping

 Evaluation

 Discussion

 Conclusion

 Demo

2



 Kernel malware attacks operating 
system kernels.

 e.g., kernel rootkits

 Attack goals

 Hide processes, files, etc.

 Provide hidden services, backdoors, etc.

 Attack techniques

 Hijack system services (e.g., system calls)

 Directly manipulate kernel data (DKOM)

 Hijack hooks by overwriting function 
pointers (KOH) 

3

Operating system 
kernel

User applications



 Kernel malware attacks operating 
system kernels.

 e.g., kernel rootkits

 Attack goals

 Hide processes, files, etc.

 Provide hidden services, backdoors, etc.

 Attack techniques

 Hijack system services (e.g., system calls)

 Directly manipulate kernel data (DKOM)

 Hijack hooks by overwriting function 
pointers (KOH) 

4

ROOT

Operating system 
kernel

User applications



 Kernel memory mapping has been used for kernel 
integrity checking and kernel malware detection.

 Existing approaches

 Type-projection mapping: kernel objects identification by 
recursively traversing pointers from global objects

▪ Static: memory snapshots as input

▪ Dynamic: memory traces as input

5



 Type-projection mapping using memory snapshots

 SBCFI [CCS 2007]

 Gibraltar [ACSAC 2008]

 KOP [CCS 2009]

 Type-projection mapping using memory traces

 Rkprofiler [RAID 2009]

 PoKeR [Eurosys 2009]

6



7

X   *next

X   *prev

Static memory Dynamic memory

struct X {
struct X *next;
struct X *prev;

}

s1

A memory snapshot

Address Address

Value

Data type definition of X



8

X   *next

X   *prev

Static memory Dynamic memory

struct X {
struct X *next;
struct X *prev;

}

a1

a1

a2

a3

X   *next

X   *prev

a2

X   *next

X   *prev

a3

X   *next

X   *prev

s1

s1

Address Address

Value
Value

Data type definition of X

A memory snapshot



9

X   *next

X   *prev

Static memory Dynamic memory

struct X {
struct X *next;
struct X *prev;

}

a1

a1

a2

a3

X   *next

X   *prev

a2

X   *next

X   *prev

a3

X   *next

X   *prev

s1

s1

The map of kernel objects is subject to 
the manipulation by malware.

Address Address

Value
Value

Data type definition of X



X3X1

 X1, X2, and X3 : kernel objects allocated in the same address with the 
same data type.

 A malware analyzer based on asynchronous mapping may not be able 
to differentiate X1, X2, and X3.

Memory 
maps from 
snapshots

Dynamic
memory 

status

Timet1 t2

X1 X3X2

10

Malware analysis using an asynchronous mapping

allocfreefree alloc

Benign Benign
?



X2 X3X1

 X1, X2, and X3 : kernel objects allocated in the same address with the 
same data type.

 A malware analyzer based on asynchronous mapping may not be able 
to differentiate X1, X2, and X3.

Memory 
maps from 
snapshots

Dynamic
memory 

status

Timet1 t2

X1 X3X2

11

Malware analysis using an asynchronous mapping

allocfreefree alloc

Benign BenignUnder attack



X2 X3X1

 X1, X2, and X3 : kernel objects allocated in the same address with the 
same data type.

 A malware analyzer based on asynchronous mapping may not be able 
to differentiate X1, X2, and X3.

Memory 
maps from 
snapshots

Dynamic
memory 

status

Timet1 t2

X1 X3X2

12

≠≠

Malware analysis using an asynchronous mapping

allocfreefree alloc

Benign BenignUnder attack
?



 Kernel objects are identified by 

transparently capturing kernel 

memory function calls.

 The memory ranges are extracted 

from function arguments and return 

values.

 Call stack information (allocation call 

site) is used to derive data types.

13

p = kmalloc (size, …);

p

p + size

p = kmalloc (…);
Allocation
call site

struct T {
… };

Runtime
call stack

Source code

* An memory allocation call site: 
code address of a memory allocation call



Lifetime of a dynamic kernel object

Allocation DeallocationUsage

14



 Advantages

 Un-tampered view
▪ Tolerant to the manipulation of memory content

Lifetime of a dynamic kernel object

Allocation DeallocationUsage

15



 Advantages

 Un-tampered view
▪ Tolerant to the manipulation of memory content

 Temporal view
▪ Lifetime of dynamic data is tracked to differentiate objects at 

the same memory location

Lifetime of a dynamic kernel object

Allocation DeallocationUsage

16



17

Kernel 
stack

Registers

Kernel memory

G
u

e
st

 O
S

Kernel source code

Kernel object map

a = kmalloc (size, flag);

V
M

M

Allocation

* An memory allocation call site: code address of a memory allocation call

,         ,size

A map entry for an object



18

Kernel 
stack

Registers

Kernel memory

G
u

e
st

 O
S

Kernel source code

Kernel object map

a = kmalloc (size, flag);

V
M

M

Allocation

* An memory allocation call site: code address of a memory allocation call

,         ,sizea+a

A map entry for an object



19

Kernel 
stack

Registers

Kernel memory

G
u

e
st

 O
S

Kernel source code

Kernel object map

a = kmalloc (size, flag);

V
M

M

Allocation

* An memory allocation call site: code address of a memory allocation call

Call site

,         ,sizea+a Call site
Runtime identifier: 

a memory 
allocation call site*

A map entry for an object



20

Kernel 
stack

Registers

Kernel memory

G
u

e
st

 O
S

Kernel source code

Kernel object map

kfree (a);

V
M

M

Deallocation

* An memory allocation call site: code address of a memory allocation call

,         ,sizea+a Call site

A map entry for an object



21

Debugging 
Information

Modified 
Compiler

Static 
analysis

Kernel 
source 
code

Extracted 
code 

elements

Memory 
allocation 
call sites*

Allocation 
code

statements

Data 
types

A: a = kmalloc (size, flag);

D: struct X *a;

T: struct X {
int a*;

};

An assignment statement

A declaration of a pointer

A type definition

* An memory allocation call site: code address of a memory allocation call

, … , Call site

X



 LiveDM : Live Dynamic kernel memory Map

 Supported guest OS kernels
 Redhat 8, Debian Sarge, Fedora Core 6

 Virtual machine monitor : QEMU

 Knowledge of kernel memory functions is 
assumed.

 Type resolution
 Debugging symbols for translation of allocation call 

sites
 Modified gcc compiler to extract code elements

22



 Effectiveness

 Performance

 Applications

 Hidden object detector (un-tampered view)

 Temporal malware behavior monitor (temporal 
view)

23



24

A list of core dynamic kernel objects (OS: Debian Sarge)
Total dynamic kernel objects: 29488

A D T
Type resolution Identified

instances

kernel/fork.c:248

Allocation statement
kernel/fork.c

248 tsk = 

kmem_cache_alloc(...); 



25

A list of core dynamic kernel objects (OS: Debian Sarge)
Total dynamic kernel objects: 29488

A D T
Type resolution Identified

instances

kernel/fork.c:248 kernel/fork.c:243

Allocation statement
kernel/fork.c

248 tsk = 

kmem_cache_alloc(...); 

Declaration of a pointer
kernel/fork.c

243 struct

task_struct *tsk; 



26

A list of core dynamic kernel objects (OS: Debian Sarge)
Total dynamic kernel objects: 29488

A D T
Type resolution Identified

instances

kernel/fork.c:248 kernel/fork.c:243 task_struct

Allocation statement
kernel/fork.c

248 tsk = 

kmem_cache_alloc(...); 

Declaration of a pointer
kernel/fork.c

243 struct

task_struct *tsk; 

Type definition
include/linux/sched.h

390 struct task_struct {

...

};



 Manual analysis: convert allocation call sites to data types 
(similar to validation methods of KOP [Carbone et. al., CCS 
2009] and Laika [Cozzie et. al., OSDI 2008])

27

Manual 
Analysis

Kernel 
source 
code

Static 
analysis

Extracted 
code 

elements

Memory 
allocation 
call sites

Data 
types

Data 
types

Debugging 
Information

=

Allocation 
code 

statements



 Benchmarks

 Kernel compile, UnixBench, nbench

 Overhead

 Slowdown compared to unmodified QEMU (worst in 
benchmarks): 42% for Linux 2.4, 125% for Linux 2.6 

 Mainly caused by the capture of dynamic objects

 Near-zero overhead for CPU-intensive benchmarks

 Non-production application scenarios

 Honeypot, malware profiling, kernel debugging

28



 Hidden object detector

 Periodic comparison of an allocation-driven map 
and memory content

Allocation-driven map Memory content

29



 Hidden object detector

 Periodic comparison of an allocation-driven map 
and memory content

Allocation-driven map Memory content

30



 Hidden object detector
 Periodic comparison of an allocation-driven map 

and memory content
 10 kernel rootkits are tested and all detected.
 Agnostic to the injection of malware code
 Non-code injection attacks (hide_lkm and fuuld) are 

detected.

Allocation-driven map Memory content

31



 Temporal Malware Behavior Monitor

 Systematically visualize malware influence via the 
manipulation of dynamic kernel memory

 Steps

32

Time

A log of kernel
control flow

A log of memory
accesses

Allocation-driven 
map log

Causes

Effects



 Temporal Malware Behavior Monitor

 Systematically visualize malware influence via the 
manipulation of dynamic kernel memory

 Steps

33

Time

A log of kernel
control flow

A log of memory
accesses

Allocation-driven 
map log

Causes

Effects

The list of kernel objects manipulated by adore-ng rootkit

T3



34

Time
(Billions of instructions)

0.1 0.2 0.40.3

Memory accesses
to T3’s address

(+:read, x :write)

Kernel 
control flow



35

Time
(Billions of instructions)

0.1 0.2 0.40.3

Memory accesses
to T3’s address

(+:read, x :write)

Kernel 
control flow

Before attack After attack



36

Time
(Billions of instructions)

0.1 0.2 0.40.3

Memory accesses
to T3’s address

(+:read, x :write)

Kernel 
control flow

Allocation-driven
map log

T1‘s 
lifetime

T2’s 
lifetime

T3’s 
lifetime

T4’s 
lifetime

T5’s 
lifetime

Before attack After attack

The time range relevant to the attack



 Malware analysis is guided to the attack victim objects (e.g., T3).

37

Time
(Billions of instructions)

0.1 0.2 0.40.3

Memory accesses
to T3’s address

(+:read, x :write)

Kernel 
control flow

Allocation-driven
map log

T1‘s 
lifetime

T2’s 
lifetime

T3’s 
lifetime

T4’s 
lifetime

T5’s 
lifetime

Before attack After attack

The time range relevant to the attack



K
er

n
el

 m
em

o
ry

 a
d

d
re

ss

Memory address offset Memory address offset

kernel modulesproc_dir_entrytask_struct (PCB) rootkit ext3

Before the rootkit attack After the rootkit attack

T3 T3

38

Kernel object maps



K
er

n
el

 m
em

o
ry

 a
d

d
re

ss

Memory address offset Memory address offset

kernel modulesproc_dir_entrytask_struct (PCB) rootkit ext3

Before the rootkit attack After the rootkit attack

T3 T3

PCB status
uid = euid = 500

suid = fsuid = 500
gid = egid = 500

fsgid = 500
cap_effective

= cap_inheritable
= cap_permitted

= 0
User credentials

PCB status
uid = euid = 0

suid = fsuid = 0
gid = egid = 0

fsgid = 0
cap_effective

= cap_inheritable
= cap_permitted

= 0xffffffff
Root credentials

39

Privilege 
escalation attack

Kernel object maps



Before the rootkit attack

40

Kernel control flow graphs

Execution time



Before the rootkit attack

41

Hook 
invocation

Kernel control flow graphs

Execution time

Read of a 
function 
pointer



Execution time

Before the rootkit attack After the rootkit attack

42

Kernel control flow graphs

Execution time



Execution time

Before the rootkit attack After the rootkit attack

43

Kernel control flow graphs

Read of a 
function 
pointer

Hijacked 
hook 

activity

Redirection

Execution time



 Memory objects of 3rd party drivers, malware

 Source code is required to derive data types.

 Memory aliasing (type casting)

 Allocation-driven map does not have aliasing 
problem by avoiding the evaluation of pointers.

 Allocation using generic pointers : 0.1% of total 
objects

 Attack cases towards memory functions

44



 Un-tampered and temporal views of dynamic 
kernel objects can be enabled for malware 
analysis.

 Kernel data hiding attacks can be detected by 
using an un-tampered view.

 Temporal view can guide a malware analyzer to 
attack victim objects by tracking data lifetime.

45



 Main technique: Live kernel object map
 Live status is dumped to a GUI every 5 seconds.
 Dynamic changes of the map are illustrated.

 Applications: Hidden PCB and module detector
 HP rootkit hides processes.
 modhide rootkit hides kernel modules (drivers).
 Data hiding attacks are checked every 5 seconds.

 URL: 
http://www.cs.purdue.edu/homes/rhee/pubs/raid
2010_livedm.avi

 Note: some parts of a video clip are trimmed to 
reduce its play time.

46

http://www.cs.purdue.edu/homes/rhee/pubs/raid2010_livedm.avi
http://www.cs.purdue.edu/homes/rhee/pubs/raid2010_livedm.avi
http://www.cs.purdue.edu/homes/rhee/pubs/raid2010_livedm.avi
http://www.cs.purdue.edu/homes/rhee/pubs/raid2010_livedm.avi


47


