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 Kernel malware attacks operating 
system kernels.

 e.g., kernel rootkits

 Attack goals

 Hide processes, files, etc.

 Provide hidden services, backdoors, etc.

 Attack techniques

 Hijack system services (e.g., system calls)

 Directly manipulate kernel data (DKOM)

 Hijack hooks by overwriting function 
pointers (KOH) 
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 Kernel memory mapping has been used for kernel 
integrity checking and kernel malware detection.

 Existing approaches

 Type-projection mapping: kernel objects identification by 
recursively traversing pointers from global objects

▪ Static: memory snapshots as input

▪ Dynamic: memory traces as input
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 Type-projection mapping using memory snapshots

 SBCFI [CCS 2007]

 Gibraltar [ACSAC 2008]

 KOP [CCS 2009]

 Type-projection mapping using memory traces

 Rkprofiler [RAID 2009]

 PoKeR [Eurosys 2009]
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 X1, X2, and X3 : kernel objects allocated in the same address with the 
same data type.

 A malware analyzer based on asynchronous mapping may not be able 
to differentiate X1, X2, and X3.
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 Kernel objects are identified by 

transparently capturing kernel 

memory function calls.

 The memory ranges are extracted 

from function arguments and return 

values.

 Call stack information (allocation call 

site) is used to derive data types.
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Lifetime of a dynamic kernel object

Allocation DeallocationUsage
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 Advantages

 Un-tampered view
▪ Tolerant to the manipulation of memory content

Lifetime of a dynamic kernel object

Allocation DeallocationUsage
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 Advantages

 Un-tampered view
▪ Tolerant to the manipulation of memory content

 Temporal view
▪ Lifetime of dynamic data is tracked to differentiate objects at 

the same memory location

Lifetime of a dynamic kernel object

Allocation DeallocationUsage
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 LiveDM : Live Dynamic kernel memory Map

 Supported guest OS kernels
 Redhat 8, Debian Sarge, Fedora Core 6

 Virtual machine monitor : QEMU

 Knowledge of kernel memory functions is 
assumed.

 Type resolution
 Debugging symbols for translation of allocation call 

sites
 Modified gcc compiler to extract code elements

22



 Effectiveness

 Performance

 Applications

 Hidden object detector (un-tampered view)

 Temporal malware behavior monitor (temporal 
view)
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A list of core dynamic kernel objects (OS: Debian Sarge)
Total dynamic kernel objects: 29488

A D T
Type resolution Identified

instances

kernel/fork.c:248 kernel/fork.c:243 task_struct

Allocation statement
kernel/fork.c

248 tsk = 

kmem_cache_alloc(...); 

Declaration of a pointer
kernel/fork.c

243 struct

task_struct *tsk; 

Type definition
include/linux/sched.h

390 struct task_struct {

...

};



 Manual analysis: convert allocation call sites to data types 
(similar to validation methods of KOP [Carbone et. al., CCS 
2009] and Laika [Cozzie et. al., OSDI 2008])
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 Benchmarks

 Kernel compile, UnixBench, nbench

 Overhead

 Slowdown compared to unmodified QEMU (worst in 
benchmarks): 42% for Linux 2.4, 125% for Linux 2.6 

 Mainly caused by the capture of dynamic objects

 Near-zero overhead for CPU-intensive benchmarks

 Non-production application scenarios

 Honeypot, malware profiling, kernel debugging
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 Hidden object detector

 Periodic comparison of an allocation-driven map 
and memory content

Allocation-driven map Memory content
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 Hidden object detector
 Periodic comparison of an allocation-driven map 

and memory content
 10 kernel rootkits are tested and all detected.
 Agnostic to the injection of malware code
 Non-code injection attacks (hide_lkm and fuuld) are 

detected.

Allocation-driven map Memory content
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 Temporal Malware Behavior Monitor

 Systematically visualize malware influence via the 
manipulation of dynamic kernel memory

 Steps

32
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 Malware analysis is guided to the attack victim objects (e.g., T3).
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Before the rootkit attack
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Execution time
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 Memory objects of 3rd party drivers, malware

 Source code is required to derive data types.

 Memory aliasing (type casting)

 Allocation-driven map does not have aliasing 
problem by avoiding the evaluation of pointers.

 Allocation using generic pointers : 0.1% of total 
objects

 Attack cases towards memory functions
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 Un-tampered and temporal views of dynamic 
kernel objects can be enabled for malware 
analysis.

 Kernel data hiding attacks can be detected by 
using an un-tampered view.

 Temporal view can guide a malware analyzer to 
attack victim objects by tracking data lifetime.
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 Main technique: Live kernel object map
 Live status is dumped to a GUI every 5 seconds.
 Dynamic changes of the map are illustrated.

 Applications: Hidden PCB and module detector
 HP rootkit hides processes.
 modhide rootkit hides kernel modules (drivers).
 Data hiding attacks are checked every 5 seconds.

 URL: 
http://www.cs.purdue.edu/homes/rhee/pubs/raid
2010_livedm.avi

 Note: some parts of a video clip are trimmed to 
reduce its play time.
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