
Mondrix: Memory Isolation for Linux using Mondriaan
Memory Protection

Emmett Witchel
Department of Computer

Sciences
University of Texas at Austin

Austin TX 78712

witchel@cs.utexas.edu

Junghwan Rhee
School of Electrical and
Computer Engineering

Purdue University
West Lafayette, Indiana 47907

rhee@purdue.edu

Krste Asanović∗
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ABSTRACT
This paper presents the design and an evaluation of Mondrix, a
version of the Linux kernel with Mondriaan Memory Protection
(MMP). MMP is a combination of hardware and software that pro-
vides efficient fine-grained memory protection between multiple
protection domains sharing a linear address space. Mondrix uses
MMP to enforce isolation between kernel modules which helps de-
tect bugs, limits their damage, and improves kernel robustness and
maintainability. During development, MMP exposed two kernel
bugs in common, heavily-tested code, and during fault injection
experiments, it prevented three of five file system corruptions.

The Mondrix implementation demonstrates how MMP can bring
memory isolation to modules that already exist in a large software
application. It shows the benefit of isolation for robustness and er-
ror detection and prevention, while validating previous claims that
the protection abstractions MMP offers are a good fit for software.
This paper describes the design of the memory supervisor, the ker-
nel module which implements permissions policy.

We present an evaluation of Mondrix using full-system simula-
tion of large kernel-intensive workloads. Experiments with several
benchmarks where MMP was used extensively indicate the addi-
tional space taken by the MMP data structures reduce the kernel’s
free memory by less than 10%, and the kernel’s runtime increases
less than 15% relative to an unmodified kernel.

Categories and Subject Descriptors
D.4.5 [Operating systems]: Reliability

General Terms
Reliability
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1. INTRODUCTION
Reliability and security are quickly becoming users’ biggest con-

cerns due to the increasing reliance on computers in all areas of so-
ciety. Operating systems written in unsafe languages are efficient,
but they crash too often and are susceptible to malicious attacks.
Crashes and security breaches incur large costs in lost productivity
and increased system administration overhead. Many of these in-
cidents could be reduced in severity or even avoided, if a fault in a
single software module was caught before it propagated throughout
the system. Faults often lead to illegal memory accesses, and wild
writes can cause further modules to fail. Memory isolation, which
forbids one software module from reading or writing another mod-
ule’s memory without permission, is therefore a crucial component
of a robust system.

Mondriaan Memory Protection (MMP) [43] is a recently pro-
posed fine-grained memory protection scheme that provides word-
granularity memory isolation in hardware. Previous work investi-
gated the use of MMP for user-level applications [43] and sketched
how an operating system might employ MMP [42]. In this paper,
we present the design and evaluation of Mondrix, a version of the
Linux 2.4.19 kernel enhanced with MMP to provide memory iso-
lation between kernel modules. Mondrix runs on top of versions
of the SimICS [27] and Bochs [23] system simulators, which are
modified to model MMP hardware. The main contributions of this
paper are:

• The design and implementation of a fine-grained kernel
memory protection system. A small module containing in-
terfaces to MMP hardware and the permissions tables forms
the most privileged layer and lives underneath the rest of the
kernel. More complex permission abstractions and manage-
ment policies are layered in separate higher-level modules.

• Implementation of a compartmentalized Linux kernel with
eleven isolated modules, including ad-hoc modules already
present in the Linux kernel such as unix domain sockets, a
network device driver split into two modules, and a disk de-
vice driver split into three modules.

• Several modifications to the original MMP hardware design
to improve cross-domain calls and stack permission han-
dling.

• An evaluation of the performance and space overheads of the
full Mondrix implementation for a range of kernel-intensive
application workloads. The results show that Mondrix exe-
cutes less than 15% more cycles (instructions and memory
stalls) than an unmodified kernel, and its data structures re-
duce the amount of kernel free memory by less than 10%.



• Results from fault-injection experiments showing how Mon-
drix can catch errors before they cause data corruption. Five
fault-injection experiments caused file corruption in Linux,
and Mondrix prevented file system corruption in three of
those five experiments.

One advantage of MMP hardware memory isolation is that it is
compatible with existing legacy code written in unsafe languages.
An alternative approach is to rewrite system code in a safe lan-
guage, such as Java or C#, that use a combination of a strict type
system and garbage collection to avoid a large class of memory ac-
cess errors encountered at run time. For example, Microsoft is us-
ing safe languages [11] in their next generation Windows Vista op-
erating system. Safe languages can incur large performance over-
heads and require unsafe extensions to interface to the lower levels
of a machine (though such extensions can be used sparingly). High
performance implementations of safe languages require optimiz-
ing compilers and run-time systems, which increases the amount
of code that must be trusted.

Although MMP requires a hardware change, it is backwards
compatible with existing instruction sets and compiled user appli-
cations. The recent introduction of the NX bit [2] to the x86 archi-
tecture by AMD and Intel indicates that manufacturers are willing
to add compatible hardware features to improve software robust-
ness. We focus on the application of MMP to a conventional oper-
ating system in this paper, but note that MMP is designed to pro-
vide protected sharing for many kinds of large extensible software
systems, such as web browsers and web servers. Mondrix could
be extended to exploit additional MMP features, for example to
provide more efficient yet safe user-level interfaces to kernel data
structures.

Preventing illegal memory accesses is not sufficient to guarantee
system reliability and security. Other failure modes include API
violations, excessive resource consumption, and synchronization
or locking errors. New static analysis [28, 13, 3] techniques can
help locate many of these other sources of software failure as well
as some types of illegal memory access. But these analyses can
sometimes find thousands of possible violations, overwhelming the
ability of developers to fix them all. Also, most analyses are un-
sound, so they do not find all errors. Although these techniques are
useful, they are complementary to dynamic checking of memory
accesses.

Our fault injections experiments validate the usefulness of mem-
ory isolation in detecting failures and preventing failures from dam-
aging system state. Mondrix is able to eliminate file system corrup-
tion in three of five cases, and it detects memory use violations in
90% of executions that lead to kernel panics.

The paper takes a bottom-up approach in describing the Mondrix
design. We begin in Section 2 with a review of the primitives pro-
vided by the MMP hardware. We present new schemes to provide
protected control transfer between domains and to manage stack
permissions, influenced by our experience in developing Mondrix.
Section 3 presents for the first time the design and implementation
of the memory supervisor, a software layer that sits below the ker-
nel and which uses the raw MMP hardware to provide a number
of permissions abstractions for higher levels of software. Section 4
describes the modifications made to Linux, including how the ker-
nel shares memory with protected modules for disk, networking,
and other services. We also describe policies for managing pro-
tected memory regions and for handling interrupts safely. We used
full-system simulation with a modified SimICS and Bochs x86 sim-
ulator to evaluate the performance of Mondrix (Section 5).
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Figure 1: A visual depiction of multiple memory protection do-
mains within a single shared address space.

Under a variety of kernel-intensive workloads, we observe less
than a 10% reduction in kernel free memory, and a slowdown of
less than 15%. We review related work in Section 6 before con-
cluding.

2. MMP FEATURES
The three main features of MMP are memory protection, pro-

tected cross-domain calling, and stack protection. This section
briefly reviews the main MMP features, and describes how MMP
has been modified from the original design [43, 42] to support
Mondrix.

2.1 Memory protection
MMP adopts Lampson’s term [22],protection domain, to refer

to a lightweight context that determines permissions for executing
code. As shown in Figure 1, MMP overlays an address space with
multiple disjoint protection domains, each with a unique set of per-
missions. Each column represents one protection domain, while
each row represents a range of memory addresses. In Mondrix,
the address space is the kernel virtual address space. There is no
domain-specific portion of an address; a pointer refers to the same
kernel memory location from any domain. Every thread is asso-
ciated with exactly one protection domain at any point in its exe-
cution, and any number of threads may be in the same protection
domain at the same time. The color in each box represents the per-
missions that a protection domain has to access the region of mem-
ory in the box. MMP allows any number of memory regions within
a domain, and each region can begin and end at any word-aligned
address.

The MMP implementation (Figure 2) stores compressed per-
missions information in permissions tables held in main memory,
and caches the tables using an on-chip protection lookaside buffer
(PLB) [21]. MMP hardware in the processor pipeline uses the PLB
to check permissions on every load, store, and instruction fetch,
and raises a protection exception if the executing thread does not
have permissions for an attempted access. Implementing mem-
ory permission checks has limited impact on a typical out-of-order
superscalar processor pipeline. The PLB is comparable in size
and access latency to a conventional TLB, and the PLB hit rate
is high [43]. Because permission checks are separate from address
translation, data can be speculatively read and used before permis-
sions checks are completed. Permissions checks need only be com-
pleted prior to final instruction commit. The permissions table is
the only in-memory structure whose size is large and whose size
scales with application memory use.

MMP preserves the user/kernel mode distinction, where kernel
mode enables access to privileged control registers and privileged
instructions. The CPU encodes whether a domain is user or ker-
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Figure 2: The major components of the Mondriaan mem-
ory protection system. On a memory reference, the processor
checks permissions for the effective address in the protection
lookaside buffer (PLB). In parallel, accesses are range checked
with the registers that delimit permissions for a region of the
stack: sb , fb , and sl . If permissions are not found in ei-
ther check then hardware or software looks up the effective
address in the memory-resident permissions table. The permis-
sions come from the stack protection table if the miss address
is a stack address, otherwise they come from the protection ta-
ble. The reload mechanism caches the matching entry from the
permissions table in the PLB. The gate lookaside buffer (GLB)
caches information for cross-domain call entry sites held in the
switch & return gate table. The CDSTregister points to the
current top of the cross-domain call stack.

nel mode using the high bit of the PD-ID control register (a zero
high bit implies a kernel domain). Protection domain 0 is used to
manage the permissions tables for other domains, and can access
all of memory without the mediation of a permissions table. Only
the bottom half of the memory supervisor (see Section 3) resides in
PD 0.

2.2 Cross-domain calling
Cross-domain calling in MMP provides a two-way guarantee;

first that a thread can only enter a callee’s domain at specified
points (switch gates), and second that a thread returning from a
cross-domain call will return to the caller’s domain only at the in-
struction following the call to the corresponding switch gate. The
processor switches domains when a call instruction’s target has a
switch gate permission, or it executes a return instruction marked
with a return gate permission. The programmer places switch gates
on the first instruction of a routine (which is why they are called
switch gates, not call gates), so call sites do not have to be identi-
fied when exporting a function, and a single indirect call instruction
can call both exported and non-exported routines. The programmer
places return gates on the return instruction of an exported routine.

Gates require more information than regular memory permis-
sions, and so are stored in a separate gate table and cached with
a separate gate lookaside buffer (GLB) (Figure 2). This is an im-
provement over the previous MMP design that did not dedicate a
table to gates. The number of gates, even for a large system, is low
(less than 1,000 in Mondrix), because modules tend to have many

Address (32b)

Switch/Return (1b) Unused (15b) Destination PD−ID (16b)

Figure 3: The format of entries in the gate table. The gate table
encodes cross-domain call points, with switch gates encoding
the callee’s protection domain.

more internal functions than exported entry points. The gate table
is stored in memory in an open hash table to allow rapid retrieval on
a GLB miss. Each entry has the format shown in Figure 3. The first
word contains the byte address of the gate instruction. The second
word of the entry specifies the gate type, and if it is a switch gate,
the destination protection domain.

MMP gates are simpler than those present in the x86, IA-64 [10],
or PA-RISC because they do not cause a stack switch. They are
similar in spirit, though simpler in implementation to call and re-
turn capabilities (used in EROS [33]), and capabilities used in
Multics [31]. By enforcing call/return semantics on cross-domain
calls, MMP limits the possible implementations of exception mech-
anisms [30]. Exception management techniques are beyond the
scope of this paper, but we note that call/return was sufficient to
handle exception support for Mondrix.

The previous MMP design required hardware for the cross-
domain call stack. The Mondrix version of MMP uses protected
memory in the user area, that the hardware can write, but software
(outside of the memory supervisor) can only read. Mondrix MMP
retains theCDSTregister that points to the current top of the cross-
domain call stack. The Mondrix memory supervisor saves and re-
stores this register on a context switch.

For each cross domain call, the processor pushes the return ad-
dress of the call instruction whose target is the switch gate, the
current protection domain ID, and the current value of thefb reg-
ister (an addition from previous work whose function is explained
in the next section). These values are popped and verified on a
cross-domain return. A domain can establish which domain called
it by reading the cross-domain call stack, and it can trust the value
because the cross-domain call stack is only writable by hardware.

One issue in Mondrix is cross-domain calls that do not change
protection domain ID. The processor executes return gates in the
callee’s domain, which causes problems if a domain calls a func-
tion that it also exports. Consider, for example,kmalloc . The
core kernel exports this routine to modules, so it must place a re-
turn gate on its last instruction. If the kernel were to call it via
a regular function call, the instruction with the return gate would
fault because a regular function call does not push the state needed
for a cross-domain return onto the cross-domain call stack. There-
fore a domain must either mark the entry points to exported func-
tions with a switch gate, or it must duplicate exported functions.
We chose to mark exported functions with a switch gate, avoid-
ing the task of classifying function calls into domain-crossing and
non-domain-crossing. Unfortunately, this decision has the conse-
quence of more than doubling the number of cross-domain calls
(Section 5.2.1).

Cross-domain calls require modifications to the processor hard-
ware. Each instruction fetch checks the GLB for the presence of
a gate. Each instruction cache line has an additional bit indicating
if there are any gates associated with instructions on that line. If
the bit is clear, then no further action needs to be taken on a GLB
miss. If the bit is set and the GLB misses, the GLB must be refilled
from the gate table. If the bit is set and there is a hit in the GLB,
the cached gate is used. Instruction cache lines are initially brought



in after a miss with the “gate present” bit set, but the bit is cleared
down if a subsequent GLB miss and gate table walk determines
there are no gates on the line.

2.3 Stack permissions
Stack storage must be protected differently from other memory,

because stacks are associated with threads that can move between
protection domains. The Mondrix MMP stack permissions design
fixes problems in the previous MMP designs [42], where different
threads resident in the same protection domain had access to each
other’s stacks. This issue is addressed by adding more per-thread
hardware.

Mondrix maintains two parallel forms of thread-local stack per-
missions. Stack permission registers designate stack frames in the
current domain as readable and writable (between the frame base
register (fb ) and the stack limit registersl ), and earlier frames
(between the stack base registersb and fb ) as read-only. Stacks
grow down, so the stack base register is at a higher address than the
stack limit register. A separate stack write permissions table allows
individual words of earlier stack frames (betweensb and fb ) to
be thread-writable (see Figure 2). A stack location is writable if
it lies between the read-only and read-write register addresses (fb
andsl ), or if its stack write permissions bit is set.

The stack registers and permission table support the common id-
ioms of stack use. The registers allow read-write access to stack
frames for the thread’s execution in the current domain, and read-
only access to previous frames. Stack accesses to the current frame
and reads from previous frames are handled efficiently. The stack
permissions table supports existing calling conventions with pa-
rameters that point to writable stack-allocated data structures. The
stack write permissions table encodes whether a given stack address
is writable by the thread, using one bit per word, and the contents
of this table is cached in the PLB.

On a cross-domain call the hardware saves the current frame base
on the cross-domain call stack, and the current stack pointer be-
comes the new frame base (unless the stack pointer points outside
sb andsl in which case the processor faults). Cross-domain calls
move all stack frames that were allocated in the previous domain
into the read-only area betweensb andfb .

The memory supervisor only allows a thread to grant write per-
missions on its current frame area, a thread may not grant itself
write permissions on a previous domain’s frames. The memory su-
pervisor flushes stack permissions information from the PLB when
a thread is descheduled, and also unloads and reloads a thread’s
stack permission register during context switches.

3. THE MEMORY SUPERVISOR
This section describes the features and implementation of the

Mondrix memory supervisor, which was designed to easily slip
“under” an existing kernel to form the most privileged software
layer. The supervisor is split into two pieces, a top and a bottom.
The bottom layer (which is not checked by MMP hardware) has
the sole job of writing the permissions tables in memory. The
top layer does everything else, including presenting a hardware-
independent memory protection interface to the rest of the kernel,
enforcing memory protection policies, tracking memory sharing,
and implementing group protection domains.

This section describes the top layer of the supervisor. The pur-
pose of Mondrix is to provide memory isolation, and the memory
supervisor enforces policies about memory sharing, such as a do-
main can’t give itself write permission on a piece of memory that
was exported to it read-only. If the top half of the supervisor de-

cides a permissions request is valid, it passes the request to the
bottom half which updates the protection tables.

This section defines several terms (including access and owner-
ship) for memory use, and then presents the intuitions behind the
supervisor’s policies for memory sharing, as well as a detailed sum-
mary of of the policy (Table 1).

3.1 Definitions for memory use
A region of memory can be accessed, each word of memory has

a domain that owns it, and permission to access memory can be
exported from one domain to another.

Access permissions
A domain’s permission, gate, and stack tables jointly describe its
access permissions, i.e., the operations it can perform on memory
such as execute a return gate or write a location. We call memory
accessibleif there is some way for a domain to access it without
causing a fault, i.e., by reading, writing, or executing it. Memory is
sharedwhen it is accessible by more than one domain.

Memory ownership
Memory ownershipis a component of permissions policy that is
implemented entirely within the memory supervisor. Ownership
identifies the domain that has ultimate authority on permissions
and use of a memory region. The address space is divided into
non-overlapping regions, where each region is owned by exactly
one protection domain. The supervisor itself owns all of memory
initially. An owner can set arbitrary access permissions on memory
that it owns, and can grant arbitrary access permissions or export
permissions on that memory to other domains. For example, a do-
main that wants to generate code would give itself read-write per-
mission on the buffer, write the code, then change its permissions
to execute-read.

Memory ownership is much coarser grain than memory protec-
tion, and changes much less frequently. The supervisor maintains
ownership information using a sorted list of memory regions and
their owners.

In Mondrix, the only way for a domain to cede ownership of
memory is to create a new domain using that memory. The super-
visor could provide achown call, which would allow a domain to
give ownership of a memory region to another domain, but this was
not found necessary.

Export permissions
The memory supervisor also implementsexport permissions,
which describe how a domain can grant permissions to another
domain. Ownership conveys unlimited export permissions, but
non-owner domains can have restricted export permissions. For
instance, an owner domain can give another domain (call it domain
X) read-write access permissions on a buffer, but limit it to read-
only export permissions. Domain X can read and write the buffer,
but cannot grant read-write permissions on the buffer to a third do-
main Y.

The current Mondrix supervisor implements a limited form of
export permissions, based on ownership and access permissions.
An owner can export permissions freely, while a non-owner can
export only up to its access permissions level.

3.2 Permissions and memory allocation
The Mondrix design allows protection, entirely managed by

the supervisor, to be separated from dynamic memory allocation,
which is managed by the kernel. This allows the main kernel al-
locators (the page and the slab [5] allocator) to remain outside the



supervisor, and lets the kernel retain custom memory allocators,
i.e., allocators that manage their own free list such as the Linux
inode or socket allocators.

The supervisor provides special API calls (perm alloc and
perm free ) to support allocators that provide memory to other
domains. A domain (call it domain X) calls an allocator domain
(call it domain Z), and the allocator domain determines the start
address and length of the memory that X will receive. The allocator
domain then calls the memory supervisor to establish permissions
for X on the memory it has chosen. The supervisor determines that
the permissions are for X by reading the cross-domain call stack.

An allocator domain can own the memory it allocates, which is
the fast path used by the slab and page allocators, or it can have
export permissions, which is used by the custom allocators because
they do not own the memory they allocate; they get it from the slab
or page allocator.

The memory supervisor is also responsible for revoking permis-
sions when required, e.g., when a memory region is freed or when
a domain is deleted. The supervisor must revoke the permissions
because it can not trust other domains to do so correctly.

The supervisor keeps track of which domains have access per-
missions to memory. This has three significant advantages. The
first advantage is that the supervisor prevents domains from leak-
ing permissions by automatically deleting permissions when neces-
sary. The second advantage is that memory need not be tracked by
kernel code after it is allocated. The owning domain simply shares
the memory, and frees it as usual. The owning domain does not
need to track the domains to which it exports permissions, reduc-
ing the changes in kernel code to use MMP. The final advantage
is that revoking permissions from only the domains that have it is
significantly faster than checking all domains for access rights.

3.3 Thread-local stack permissions
The memory supervisor is responsible for managing thread-local

stack permissions. Threads can control permissions only for frames
in their current domain; the supervisor rejects permission change
requests for memory between the most recently saved frame base
and the stack base. If a thread grants write permission to a frame, it
must revoke permissions on the frame before the frame returns, or
it will leak permissions (just as a domain which does not properly
revoke permissions on a buffer leaks permissions). On scheduling
events, the kernel calls the supervisor to save and reload the thread-
local CPU registers (sb , fb , sl , CDST, and the stack table base).

3.4 Creating and deleting domains
The supervisor manages the creation and deletion of protection

domains. A domain can create a new domain bysubdividing, pass-
ing ownership of a region of its own memory to the new child do-
main. The supervisor tracks the parental relationships between do-
mains using a tree, with the supervisor itself at the root. When a
domain is deleted, ownership of its memory regions passes to its
closest extant ancestor. The supervisor must also revoke permis-
sions on memory owned by the deleted domain from all domains.

3.5 Permissions policy
Table 1 summarizes the supervisor’s API and policies for man-

aging memory ownership and permissions. There are two calls to
set permissions on memory regions:mprot sets permission for the
current domain whilemprot export sets permission in another
domain. Thepd subdivide call creates a new domain, while
pd free deletes a domain. Memory allocator domains call the su-
pervisorperm alloc andperm free routines to give the caller
of the allocator access permissions in the memory being allocated.
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Figure 4: An example of a group protection domain. In this
case, protection domain 1 has read-write permissions on two
regions of memory. It grants read-only permissions on both
to group protection domain 1. Protection domain 3 joins the
group protection domain (indicted by the arrow labeled “mem-
ber”), gaining read-only permission to the two pieces of mem-
ory from GPD 1 (indicated by the two arrows from GPD 1 to
PD 3).

While there are many details in the table, the supervisor policy
follows a few general rules: a non-owner can not dictate permis-
sions to an owner; a non-owner can not downgrade the permissions
of another domain; a non-owner can not upgrade its own permis-
sions.

Table 1 refers to an ordering on permissions values. Mondrix
uses a partial order. Read-write, execute-read, and gate permissions
all compare equal, so a non-owning domain can convert between
these permissions values. All of these values compare greater than
read-only, which in turn compares greater than no permissions.

3.6 Group protection domains
A group protection domainis a collection of memory regions,

each with a specified permission. Group domains are useful when
multiple domains need access to the same set of memory regions,
and where the memory segments in that set change over time. They
are not essential to Mondrix’s function, but they are a powerful tool.

A regular protection domain can create a group protection do-
main and then grant access permissions to the group for multiple
memory segments. Another protection domain can thenjoin the
group domain to gain the permissions specified by the segments in
the group. This process is shown in Figure 4, where PD 1 exports
two memory regions read-only to a group protection domain that
is joined by PD 3. When a domain grants or revokes permissions
to a group, the memory supervisor adds or revokes permissions on
the new memory for every domain in the group. All domains are
members of a special global group maintained by the supervisor
that contains memory regions with global access permissions. The
supervisor can reduce the cost of updating group permissions by
sharing appropriately aligned pieces of the underlying trie-based
permission table across domains.

One example use of group domains is for the kernel inode struc-
ture, which records metadata information for file system objects.
Several modules (such as the EIDE disc driver and the interpreter
loader) need read access to inodes. The kernel creates a read-
only group protection domain of inodes that a module can join to
get read permissions on these memory areas. The memory loca-
tions that hold inodes change over time as inodes are allocated and
deleted, and the kernel keeps the group protection domain of inodes
up to date by adding the new ones to the group, and deleting the old
ones from the group.

The memory supervisor regulates which protection domains can
join a group. Group domains, like any access control mechanism
with groups [32], must address difficult issues of how group mem-
bership is managed. The memory supervisor would enforce the
policy chosen by the system designer, but we defer to the literature
for possible policies, and simply present the group mechanism.

4. COMPARTMENTALIZING LINUX
The Mondrix prototype partitions the Linux kernel into protected

modules using MMP. This section first describes how Mondrix di-
vides the Linux kernel code into protection domains, and then de-
scribes the code Mondrix adds to Linux to explicitly manage mem-
ory access permissions, cross-domain calls, and interrupts.

4.1 Mondrix module structure

Module Description

mem. supervisor (bot)
Code that writes the MMP permissions
tables.

mem. supervisor (top)
Code to manage device-independent
MMP permission abstractions.

kernel Most of the Linux operating system.

printk

This is an ad-hoc collection of the ker-
nel functions and data consisting of
printk and related functions (e.g.,
sprintf , vsprintf).

ide-mod
ide-disk
ide-probe-mod

Collectively, the EIDE disk driver.

unix Unix domain sockets (used by syslogd).

rtc The real time clock.

binfmt misc The interpreter loader (supporting
#!/bin/sh).

8390
ne

The bottom and top halves of the net-
work driver, controlling an NE2000 net-
work interface card.

Table 2: Mondrix kernel modules. Each module is resident in
its own domain even when several modules share a description.

The code in Mondrix is divided into the protection domains
shown in Table 2. The partition of code into domains is arbitrary,
but Mondrix uses several guiding principles. It isolates each ker-
nel module in its own domain. If the kernel developers think of a
collection of functions as a module, then that collection can control
its memory permissions in Mondrix. The disk and network device
drivers are sub-divided into several modules and each module re-
sides in its own domain.

Mondrix also collects certain functions into domains in order to
increase memory isolation within the kernel. Domain 0 holds the
bottom half of the memory supervisor. Domain 1 holds the top half
of the memory supervisor. Most of the kernel is resident in domain
2, while domain 3 holds the collection of kernel functions that print,
write and format strings (included the dreadedsprintf function,
cause of many buffer overflows).

The division into protection domains forces all memory sharing
between modules to be explicit. The principle of least privilege
dictates that each kernel module has the minimum memory per-
missions necessary for correct operation, but this desire must be
balanced against performance and ease of programming. For exam-
ple, theprintk domain was granted permission to read all kernel
strings. Kernel strings are contiguous in memory and granting read
permission for each string would be tedious, error-prone and less
efficient. Individual modules export read permission toprintk
for individual strings or for their string section. All write access to
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Figure 5: A before and after picture for domain creation with
module loading. For each domain, the thicker bar shows the
protection information, and the thinner side bar shows owner-
ship information.

stack variables (mostly forproc filesystem calls tosprintf ) is
provided and removed explicitly.

4.2 Loading modules into protection domains
Linux kernel modules are object files that a user loads into a

running kernel using theinsmod program. Theinsmod program
reads a module from disk, then links it against the currently running
kernel (based on symbol information it receives from a system call),
resolving any undefined symbols in the object module.

After checking the module, the kernel calls the memory super-
visor to set correct memory permissions on the module. The su-
pervisor needs the length of the program sections (already pro-
vided by insmod ), and for every function its start address (also
already provided) and the address of the return instruction (Mon-
drix’s insmod provides this additional information). Program sec-
tion information is used to properly set the initial permissions for
the module, while function entry and exit information is used to
guarantee that switch and return gates are set only at the start and
at the return instruction of a function respectively. The memory
supervisor places the obvious permissions on each section (e.g.,
execute-read permission on the text section).

The supervisor needs the address of the return instruction for
public functions in the module that other domains call, so it can set
a return gate on the function. Withgcc versions 3.3.x, the return
instruction is placed arbitrarily in the function to allow outlining of
uncommonly executed code, so Mondrix stores the return instruc-
tion addresses in the kernel modules.

Figure 5 shows how permissions and ownership information
change when a domain is created to hold a newly loaded module.
In the before state, the kernel (in PD 1) owns all of physical mem-
ory. In the after state, it has subdivided, and loaded a module into
PD 2. Permissions for the module’s code and static data are given
by the shaded regions, and correspond to the object file layout of
program sections. The kernel allows the module in PD 2 to own
its static code and data, but it retains ownership of the rest of the
address space.

Previous work [42] predicted that symbol information could im-
plicitly define sharing relationships. Code and data can be exported
by name (using theEXPORTSYMBOLdirective in Linux). While
this is the currently encouraged method for exporting functions in
the Linux kernel, there is plenty of legacy code that exports func-
tions anonymously by passing their address directly. Kernel code
assigns the addresses of regular and static functions to structures
of function pointers that it passes to other domains. The names

of the static functions are not visible to the other domains, but the
function pointers are! Unfortunately, import and export of function
name symbols is only an incomplete record of true inter-domain
calling behavior.

As bad as the situation is for code, it is worse for data. C’s ambi-
guity between pointer and array, and the relative rarity of importing
data by named symbol makes imports nearly useless as an indicator
of true inter-domain data sharing. Most code usesextern decla-
rations for data instead ofEXPORTSYMBOL.

4.3 Disk driver
Many kernel drivers are split into two parts, a device-dependent

bottom half and a device-independent top half, where each half is
an independently loaded kernel module. The EIDE disk driver has
one top half (ide-mod ) and two bottom halves, one to gather disk
controller information (ide-probe-mod ), and one to gather disk
geometry information (ide-disk ). Different halves of a driver
share data structures, and call each other frequently.

Adapting device drivers for Mondrix consists of placing explicit
calls to the memory supervisor that manage access permissions on
memory used by the driver and shared with other parts of the sys-
tem. In order to increase memory isolation, Mondrix grants per-
mission on page and buffer cache memory regions before calling
the disk driver to read or write the data, and revokes permissions
once the I/O is done. The EIDE disk model in Bochs does not sup-
port DMA, but the EIDE disk model in SimICS does, so Mondrix
controls the permissions for both DMA and programmed I/O data
transfer.

Another part of device safety is proper programming of device
registers. In one file system corruption prevention experiment (Sec-
tion 5.1.2), Mondrix was able to determine that the disk controller
was programmed with a bad address range because it read from an
illegal location. Mondrix could do more of this kind of checking;
specifically it could check memory bounds for every I/O request
(DMA or PIO) without changing the interface. A small I/O bounds
check domain is created, and only this domain gets write access to
memory mapped I/O device control registers. The kernel or driver
calls into the I/O domain to write to the DMA engine registers. The
bounds checker checks the values and performs the writes. Writ-
ing device control registers is already slow compared to normal
memory references, so the additional latency of the cross-domain
call and check should not have a significant impact on overall per-
formance. This approach would catch DMA programming errors,
but would not prevent a faulty device from writing out of its pro-
grammed bounds.

4.4 Network driver
The NE2000 network driver has a chip-specific portion (8390 ),

which coordinates the reception and transmission of packets and
handles device interrupts and initialization, and a board-specific
portion (ne), which moves data onto and off of the network card.
Mondrix must give the8390 module read-write permissions on
certain fields in thesk buff , which is the kernel data structure
which manages packet data. It must give thene module read or
read-write permission (for transmission or reception) on the packet
data itself.

Mondrix allows thene module to retain read permission on
packet data while packets can be retransmitted. It allows read-
write access to the8390 module to 8 words (32 of 144 bytes)
in thesk buff structure, none of which are kernel data structure
pointers (though some of the fields point to packet data). This pol-
icy limits the damage a malfunctioning driver can do to the kernel
and increases the chances that a malfunctioning driver would be



detected by an illegal memory reference. Mondrix allows kernel
programmers to balance memory isolation with performance. A
more restrictive permissions policy would remove write access to
the8390 module forsk buffs that are on the free list.

It is unfortunate that the only Ethernet device model Bochs sup-
ports is the NE2000, since the NE2000 is not a sophisticated device
(it does not support DMA), but adding an additional Ethernet hard-
ware model to the Bochs machine simulator was beyond the scope
of this work.

4.5 Interrupts
Handling device interrupts is an important operating system task,

and MMP allows them to proceed in a protected way. Interrupts do
not cause a protection domain switch, but jump to shared interrupt
stubs that are marked executable in every domain using the global
group protection domain. The interrupt assembly stubs are a shared
library, albeit a simple one that has no data.

The stubs must be verified by inspection, as they are now (about
50 lines of assembly code), since they are trusted in every domain.
The transfer from the interrupt stub to a C handler routine has a
switch gate, causing a domain crossing to the handler’s domain.
Distributing the assembly stubs to all protection domains does not
create a new vulnerability since the correct functioning of the ma-
chine is dependent on the correct functioning of the interrupt as-
sembly stubs.

4.6 Inlining
In C, header files sometimes include inlined functions that ref-

erence a module’s internal data. Any domain that calls the inlined
function needs permission to access the inlined data. Sometimes
the domain exporting the inlined function should export permis-
sions on its data, and sometimes an inlined function should be unin-
lined to avoid giving other domains permission to read or write its
sensitive data. Mondrix uses both approaches, on a case by case
basis.

4.7 Slab allocator
The kernel slab allocator [5] is called frequently for small mem-

ory objects, allocated out of caches (kmemcache t ). Mondrix
takes advantage of the fact that the domain that allocates a cache
is almost always the one that allocates memory from it. Mondrix
manages the permissions for entire slabs (usually pages) internal
to the caches. This does not compromise safety because the su-
pervisor checks (with hardware providing integrity) if the calling
domain owns the cache, and if not, provides permissions only for
the individual object requested. However with this policy, a domain
that owns a cache can write into memory that was not yet allocated
and not cause a fault.

Like many decisions about how tightly to control memory per-
missions in Mondrix, optimizing the slab allocator trades speed and
isolation. Mondrix chooses speed in this case, but the fault injec-
tion results (Section 5.1.2) indicate a high degree of isolation with
this policy.

5. EXPERIMENTAL EVALUATION
This section analyzes the performance of Mondrix executing on

the SimICS [27] and Bochs [23] machine simulator. We added
a functional model of the MMP hardware to each simulator, and
booted Mondrix on the modified simulator. The memory supervi-
sor in Mondrix handles all permissions requests, and its bottom half
writes the permissions tables, so all instruction and memory traffic
from that code is present. The model includes a cache simulation,

gathers workload statistics, and checks all accesses for correct per-
missions.

5.1 Functional evaluation
Our hypothesis when building Mondrix was that the memory iso-

lation it provides would allow the kernel to detect data structure
corruption, limiting damage from bugs. Mondrix exposed a latent
bug in Linux, and we injected faults into Mondrix to see how effec-
tive it would be at detecting and avoiding data structure corruption.

5.1.1 Mondrix exposes a Linux error
Converting Linux to Mondrix exposed a case where, during ker-

nel initialization, the kernel freed the stack memory on which it
was executing. The kernel continued to use the stack memory after
it freed it, even making calls into dynamically loaded modules.

proc pid lookup is a function in the proc file system (a
pseudo-filesystem for processes control and information) that looks
up a user area based on the process identifier. The function
calls free task struct on the task it looks up. The call
should not actually free the task structure because the function
decrements a reference count that was incremented earlier in
proc pid lookup . free task struct only frees the task
structure if the structure’s reference count is zero. But the ref-
erence count is zero at one point during kernel initialization, so
free task struct actually frees the task structure. Since the
task structure and the kernel stack are in the same allocation unit,
the kernel stack is freed along with the task structure. In one case,
the kernel frees the memory for the stack on which it is executing.
Since the Mondrix memory supervisor revokes all permissions on
memory that is freed, it reports many protection violations from the
kernel reading and writing the stack memory it just freed.

Another call to free task struct is made in
proc pid delete inode , where it should be balanced
by a previous increment of the use count on the taskstruct
memory. But again this routine causes the kernel to free the stack
memory on which it is executing. The code that manipulates the
reference counts for the task structure was changed during the
development of version 2.5, and versions 2.6.x use the new system.
We did not check if the new code manifests the same bug we found
in 2.4.19, because we have not ported our kernel changes to 2.6.x.

5.1.2 Fault injection experiments
In order to demonstrate Mondrix’s effectiveness at containing

memory corruption in the presence of kernel bugs, we ran a series
of experiments injecting faults into Mondrix. We use the same fault
injection code used in the Rio file cache studies [8] and Nooks [38],
which changes instructions and data in the kernel binary in a way
that models the effect of real software bugs. Once the kernel loads
all of its modules, the fault injection code injects faults and the
kernel tries to run a small workload consisting offind andwget
to simulate normal use of the disk and network.

Corrupting the file system is one of the worst possible outcomes
from a kernel failure. After each fault injection experiment we ran
the Unix file system consistency check programfsck . If fsck
deleted files or directories in its effort to reconstruct the file system,
we classified that run as corrupting the file system. Deleting files
and directories goes beyond the metadata fixups (e.g., fixing the
free block count) that are common from a kernel crash or hang.

These experiments were run on Linux’sext2 filesystem. There
are journaling file systems (likeext3 ) that largely avoid the prob-
lem of corrupted file systems due to unexpected crashes or kernel
behavior. The purpose of the experiment is to show that Mondrix
can catch the effect of kernel problems before they propagate and



Symptom # runs MMP catch
None 157 4 (02.5%)
Hang 23 9 (39.1%)
Panic 20 18 (90.0%)

Table 3: Fault injection experiments on Mondrix. Faults either
resulted in a clean shutdown (this category includes cases where
the faulting process (and/or others) is terminated), a hang or a
panic. The # runs column shows the number of instances for
each symptom (200 runs total). The MMP catch column indi-
cates the number of runs where Mondrix caught a memory per-
missions problem (which was not caught by the kernel’s page
table).

spread to other parts of the kernel. A corrupt file system is a rea-
sonably common and unpleasant example of kernel bugs’ effects
rippling out from their point of origin.

Five out of 200 fault injection experiments resulted in a corrupt
file system. In three of these cases, Mondrix detected a memory
permission violation, and in all three cases if Mondrix halted when
the MMP protection system detected the violation, it would not
have corrupted the file system.

The three cases are interesting because they display the strengths
of MMP, and the diversity of kernel failure symptoms. In one case
(simulating a pointer dereference bug) MMP catches the EIDE disk
controller reading from dynamically allocated kernel memory. The
disk controller does not have access to that memory, but it was
passed a bad pointer. In another case (in which a random instruc-
tion was deleted),sprintf was passed a pointer to a device lock
instead of a character buffer, and it corrupted the lock and nearby
data structures. In the final case (simulating failure to initialize a
variable), the console driver reads from an address that could be the
address of a kernel stack, but is not.

The proper strategy for dealing with faults in the kernel depends
on how the operator wants to balance availability with data in-
tegrity. Linux’s default behavior on a kernel memory fault is to kill
the process context that caused the fault. This can be an effective
way of limiting the scope of the problem while keeping the system
running. For instance, in one of our fault injection experiments the
kernel killedmodprobe after it finished loading a module. Be-
cause the user process had completed its work, killing the context
was a safe and effective course of action. Some faults are more se-
rious, resulting in hangs or kernel panics. Mondrix can detect when
faults are corrupting data structures and stop them to limit the scope
of the damage.

The data in Table 3 summarize our fault injection experiments.
MMP detected more illegal memory sharing as the symptoms of a
fault rose in severity from minor symptoms (possibly killing a user
task) to system hangs and kernel panics. This data is suggestive
that MMP is detecting important errors as illegal memory sharing,
especially in conjunction with the data about file system corruption.
However, a lack of symptoms does not always imply correct opera-
tion, nor does a hang necessarily imply a major problem. Important
data structures can be corrupted when the kernel successfully shuts
down, and some hangs occur late in shutdown where they are be-
nign. Subdividing the kernel into more domains might catch more
memory data structure corruption (and cost more performance).

5.2 Performance evaluation
We use a performance model to estimate the overhead of adding

fine-grained memory protection support to the processor. We as-
sume a processor that can complete one x86 instruction per cycle.

Benchmark Description
config-xemacs ./configure for xemacs 21.4.14

thttpd

A small http server (thttpd) serves 452 KB
of data from 28 requests, 13 of which re-
quire forking a cgi script which run several
programs.

find
find /usr -print| xargs grep kangaroo;
/usr is 255 MB, 1,720 directories with
16,343 files.

MySQL

A MySQL client test from the MySQL
distribution. The client connects to the
database (on the same machine) and ex-
ecutes 150 test transactions covering the
range of database functionality.

Table 4: The names and descriptions of the benchmarks run on
Mondrix to evaluate MMP support in the Linux kernel.

We model a two level cache hierarchy, based on the Intel Pentium-
4, with 16 KB 4-way associative level-one instruction and data
caches, and an 8-way associative 2 MB level-two unified cache.
Level-one miss penalty is 16 cycles, and level-two miss penalty
is 200 cycles (this memory access penalty is low, representing a
4 GHz processor able to access local DRAM in 50 ns). Cache lines
are 64 bytes. Main memory size is 256 MB, which is small by to-
day’s standards, but is a limitation of the simulation environment.
This model represents the performance of an aggressive processor
over the next few years.

SimICS EIDE disk model properly limits disk bandwidth and
provides a simple fixed latency for each disk operation. We use
a disk latency of 5.5 ms, representing an aggressive 2 ms for the
rotational latency of a 15K RPM disk and an average seek time of
3.3 ms (the disk-active workloads make random requests making
this number optimistic). The SimICS EIDE disk model includes
DMA.

Table 4 shows the system-intensive benchmarks we ran on Mon-
drix to measure the effect of isolating kernel modules in separate
protection domains. The benchmarks were chosen as common
tasks that stress the disk and network subsystems of Mondrix. The
OS was booted fresh before each trial. All utilities were from the
Debian Linux distribution as of January, 2005.

The configuration ofxemacs is a long running test that stresses
the virtual memory system with process creations, deletions,
scheduling and small file access. It runs for long enough that the
kernel memory allocators reclaim memory. Thethttpd bench-
mark is a small web server that serves data and runs cgi scripts.
The cgi scripts in turn run several native programs e.g., to print en-
vironment variables. This benchmark uses the network heavily and
also creates many small processes. Thefind benchmark is disk
and filesystem intensive, as is theMySQLdatabase test.

The graphs in Figure 6 (best viewed in color) show the perfor-
mance of the benchmarks on Mondrix.config-xemacs , find
and MySQLrun on SimICS, whilethttpd runs on Bochs (be-
cause SimICS does not have an NE2000 network device model).
SimICS’s EIDE disk model supports DMA, so the workloads run
on SimICS spend only a small amount of time servicing disk inter-
rupts. The NE2000 network device in Bochs does not use DMA, so
the time to service network interrupts includes the time for the pro-
cessor to copy the packet data. Most of the kernelother category
in thethttpd workload includes data copying from interrupt pro-
cessing. Bochs does not model the device latency of the network
card.
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Figure 6: Performance of benchmarks on Mondrix, including instructions, memory stalls, and disk device latency. Theother
category for user programs is for any program whose individual contribution to performance falls below a threshold. Theother
category for the kernel includes system calls, kernel threads and interrupt processing that falls below a threshold. Categories like
fork exec include all system calls related to forking and execing processes, andfs misc includes most file system calls that are not
open , close , read , or write . The mmpbot category is the bottom of the Mondrix memory supervisor that writes the protection
tables, while mmptop is the top half of the memory supervisor. The workload’s kernel/user execution time split appears at the
bottom of the legend.

The CPU overhead of adding MMP to Mondrix is less than
15% for all benchmarks, and below 8% for the non-networking
benchmarks. As explained in Section 4.4, Mondrix tightly con-
trols the permissions on network packets. The numerous calls to
mprot export from the kernel’s networking code shows up as
time spent writing permissions tables (mmpbot in the graph). The
MMP overhead could be reduced further by using a pool of pre-
allocated packet buffers.

Table 5 shows the performance overhead of Mondrix as com-
pared with an unmodified Linux. CPU and memory overhead is
less than 15%. All experiments described in this section use the
bitvector format [43] for the permissions tables.

Permissions tables are written in response to memory alloca-
tion, process creation, and direct calls to the memory supervi-
sor. The slab allocator optimizations (see Section 4.7) are ef-
fective at limiting table updates due to memory allocation. The
config-xemacs and thttpd benchmark create many pro-
cesses, and see increased table writing activity because of it. The
kernel could keep tables for a process’ program sections resident
while most of the process’ text pages are resident, reducing the
overhead of re-executing the same process. Direct calls to the mem-
ory supervisor are a matter of programmer policy. Mondrix’s tight
control of permissions on network buffers is the main contributor to
the performance overhead in the bottom of the memory supervisor.

Much of the kernel overhead forthttpd arises from increased
memory traffic due to PLB refils, as explained in Section 5.2.3.

To keep the overhead from the bottom of the memory supervisor
low, the table writing code is heavily optimized. The table writing
code uses lookup tables to write permissions in 32-bit words, and
the code is optimized to quickly find the proper table given that
most allocations are for a page or less.

Benchmark Cyc(·109) Mbot Mtop Kern
config-xemacs 16.5 (4.4%) 2.4% 0.7% 1.3%
thttpd 0.23 (14.8%) 9.3% 2.0% 3.7%
find 14.3 (3.3%) 1.3% 1.2% 0.8%
MySQL 0.21 (9.6%) 4.0% 3.3% 2.3%

Table 5: Performance overheads for workloads on Mondrix, as
compared with Linux. The Cyc column shows the number of
cycles (in billions) for the workloads, and in parenthesis, the
slowdown of the workload compared with Linux. The Mbot
column shows the percentage of time spent in the bottom half of
the memory supervisor, writing permissions tables, while Mtop
shows the time spent in the top half of the memory supervisor.
The Kern column shows the overhead in the remaining kernel
code including code added to the kernel to manage memory
permissions and PLB refills.



Benchmark XD Ca Cy/Ca Self/Other
config-xemacs 0.3% 3.29 1,286 70% 30%
thttpd 0.8% 0.15 939 64% 36%
find 0.2% 2.74 846 57% 43%
MySQL 0.7% 0.12 664 50% 50%

Table 6: Cross-domain calling behavior for workloads running
on Mondrix. The XD column is the percentage of total execu-
tion time each workload spends doing cross-domain calls (in-
cluding compute cycles and memory references). The Ca col-
umn is the number of cross-domain calls in millions. The Cy/Ca
column is the average number of non-idle kernel cycles (in-
struction and memory stall) between cross-domain calls. The
Self/Other column indicates the percentage of cross-domain
calls that a domain makes to itself versus those that cause a
domain change.

The find benchmark andMySQLmake heavy use of the file
system, creating significant idle time. This idle time overlaps much
of the Mondrix overhead caused by the additional checks in the
inode allocator, the generic block driver, and the slab memory al-
locator. The code in these subsystems calls the memory supervisor
and makes local decisions about granting memory access.

There were several challenges running the network experiments
on Bochs. There is a bug in the Bochs device model which causes
occasional transmit errors at the device level. The occurrence of
these bugs can be seen as the idle time in the graph as the kernel
resets the network card and retransmits the lost packets. Thirteen
packet corruptions occurred in this run out of 498 packets (eight
packet corruptions occurred in the corresponding test on unmodi-
fied Linux).

In order to minimize the timeout bug and because the simulator
does more work (checking permissions) when running Mondrix,
simulated time runs at different rates in the Linux and Mondrix
benchmarks. Under unmodified Linux the system believes that 40
seconds have elapsed, while under Mondrix the system believes
that only 2 seconds have elapsed. The amount of web server re-
lated work is the same, but under Linux the benchmark does more
user work (klogd runs under Linux and does not have time to
run under Mondrix). To compensate we compare only webserver
related time forthttpd . The overheads from the memory super-
visor are higher in Table 5 than in Figure 6 because the idle time
was subtracted from the total runtime (normalizing to webserver
related work) to compute the figures in the table. Onlythttpd
runs under Bochs, so it is the only benchmark with this problem.

We investigated removing permissions fromsk buffs when
Mondrix places them on the free list and reinstating the permis-
sions when they are dequeued. That brings the total overhead up to
19.1% from the 14.8% in the table.

5.2.1 Evaluation of cross-domain calling in Mondrix
Table 6 summarizes cross-domain calls in Mondrix. Cross-

domain calls account for less than 1% of the total execution time
for all benchmarks. The protection domain granularity enforced
in Mondrix is very fine-grained (justifying architectural support).
The table shows that cross-domain calls are frequent (at least once
every thousand cycles of kernel activity), and cross-domain calls
from a domain to itself are more frequent than calls to other do-
mains. A domain makes cross-domain calls to itself when it calls
a function that it also exports to another domain (like the kernel
exportskmalloc ). As the kernel is split into more domains, more
calls will be cross-domain calls.

Benchmark Free Mem Used
config-xemacs 10.2%
thttpd 1.1%
find 7.8%
MySQL 1.6%

Table 7: Reduction in free kernel memory after each workload
as reported by /proc/meminfo.

The cost model for a cross-domain call or return is a 5 cycle
penalty to flush the pipeline and perform memory accesses plus any
memory stall accrued by the memory accesses. Each cross-domain
call stores the protection domain, return address and if the protec-
tion domain changes, the contents of thefb register. Each cross-
domain return loads these values (only loadingfb if the protection
domain changes). The loads for the permission table base pointers
are not included since these can be cached on chip. During all of
these benchmarks, the cross-domain call stack never grows deeper
than 64 entries, so this data structure does not occupy significant
cache area.

5.2.2 Evaluation of memory use in Mondrix
Table 7 shows the memory overhead of Mondrix by comparing

the output of /proc/meminfo after each benchmark for Mondrix and
an unmodified Linux. The memory overhead represents how much
less free memory the kernel has after running each benchmark be-
cause that is the most conservative metric. For all benchmarks the
sum of theActive and Inactive memory in the kernel was
within 1% for Mondrix and Linux. The memory supervisor’s data
structures do not disturb the kernel’s active memory use.

5.2.3 PLB refill traffic
Table 8 shows how effective the on-chip protections cache (the

protection lookaside buffer (PLB)) is at caching permissions. On a
PLB miss, the cost model for the refill is 1 cycle per load plus any
memory stall the load incurs. The PLB caches permissions data for
heap, text and stack memory (but it does not cache gate informa-
tion). All benchmarks spend less than 4% of their execution time
refilling the PLB. The PLB refill cost is spread through execution
of all domains including the memory supervisor. The networking
benchmark writes the permissions table frequently, so it spends the
most time refilling the PLB.

The memory supervisor keeps the PLB consistent with the per-
missions table by flushing the PLB when necessary. The PLB is im-
plemented as a ternary CAM [43], so permissions can be flushed for
power-of-two sized virtual address regions. The supervisor flushes
the PLB for address ranges that could become stale when it writes
the protection tables, and it flushes the PLB of stack permissions
on a process switch.

The PLB miss rate is a bit lower than typical second level cache
miss rates. The PLB can effectively cache information for regions
larger than a page, like the kernel text and data sections.

Benchmark PLB time PLB mr
config-xemacs 0.8% 0.51%
thttpd 3.8% 0.87%
find 0.4% 0.07%
MySQL 1.7% 0.22%

Table 8: The PLB time column is the percentage execution
time of each benchmark that the hardware refills the PLB. The
PLB mr column is the miss rate of the PLB.



6. RELATED WORK
Nooks [37, 38] provides device driver safety using conventional

hardware. Nooks uses conventional paging hardware to isolate
modules by putting them in different addressing contexts (protec-
tion domains). These domains execute with full kernel privileges,
but they differ in their view of memory permissions. Crossing
Nook boundaries is expensive because it requires changing virtual
address context and copying parameters. To minimize boundary
crossings, Nooks places multiple kernel modules in the same pro-
tection domain. MMP can enforce the natural, fine-grained module
boundaries established by the Linux kernel developers. The fre-
quency of cross-domain calls in the MMP system (Section 5.2.1)
is at least an order of magnitude greater than Nooks [37] without a
decrease in performance, indicating that MMP offers greater mod-
ularity and isolation.

Nooks is an elegant solution to the specific problem of bringing
safety to OS extensions for existing hardware, while MMP is a pro-
posal for a general-purpose architectural mechanism for protected
sharing, which we have applied to the problem of safe OS exten-
sions in this paper. MMP can also be used to provide safe user ex-
tensions, and a variety of other applications like data watchpoints,
optimistic compiler optimizations, and efficient read barriers for
garbage collection.

Mondrix contains modules that are not device drivers (like sup-
port for unix domain sockets) and whose memory access and call-
ing relationship to the rest of the kernel is not as well behaved as de-
vice drivers. It provides protection domains for these ad-hoc mod-
ules just as it provides protection for device drivers. Nooks relies
on the specific calling relationship drivers have with the kernel and
could not isolate modules like the unix domain socket module. In
several fault injection experiments where Mondrix caught a shar-
ing violation in advance of a kernel panic, the unix domain was the
source of the violation.

Nooks includes a recovery system [38] that can safely restart a
failed device driver. It tracks kernel objects and tries to reclaim re-
sources on a fault. Mondrix does not have a recovery mechanism
but recovery can be done at a coarser level of granularity than iso-
lation, so Mondrix could use many of Nook’s techniques while the
MMP hardware should increase the efficiency of the Nooks imple-
mentation.

Nooks consists of 22,266 non-comment lines of code, including
924 lines of Linux kernel changes. The top of the Mondrix mem-
ory supervisor is 3,922 lines of non-comment code, the bottom is
1,730 and Mondrix requires 1,909 lines of kernel changes. Mon-
drix requires more kernel changes because memory permissions are
managed at a finer granularity, requiring more calls to the memory
supervisor. The advantage to adding hardware is that the trusted
computing base can be kept small and understandable, as evidenced
by the size of the memory supervisor. The functional complexity of
the hardware design is quite low, as it has a well-defined behavior
that only needs to consider a single dynamic instruction at a time.

6.1 Language-based protection
Microsoft plans to use safe languages (called “managed code”)

to implement new features in its next next generation operating sys-
tem, called “Vista”[11]. One of the reasons for the switch to man-
aged code is to provide safety for kernel extensions. Vista’s trusted
computing base will be orders of magnitude larger than Mondrix’s.
At this point it is unclear if malicious attacks will be stopped by
safe languages, or if attacks will cause resource exhaustion rather
than crashes. It is also unclear if the performance cost for the safety
of such a system will be acceptable. The switch to a system con-
sisting entirely of managed code (if it can be done) will take many

years, during which the vulnerabilities in non-managed code will
persist. The operating system and its drivers are a large program
to recode, but there is research on how to recode an OS for a safe
language [16, 19].

There have been several operating systems that use safe lan-
guages as their primary extensibility mechanism [20, 41], with
SPIN [4] a large, recent example. SPIN demonstrates how an op-
erating system written in a safe language (Modula-3) can be made
efficient in terms of CPU and memory consumption. But device
drivers in SPIN are written in C, because rewriting existing driver
code is too much work. Also, because of their low-level nature,
many device drivers require unsafe programming language fea-
tures [4]. One advantage of MMP is that it efficiently supports
legacy code, written in unsafe languages.

The SPIN project included a linker design [36] whose goals are
similar to the gate design in Mondrix. In SPIN, a typesafe refer-
ence to a domain gives permission to call that domain’s functions.
Mondrix allows more fine-grained control. A module may export a
different arbitrary subset of its functions to each other domain.

CCured [29, 9] is a language-based approach to adding mem-
ory safety to C. It is unclear whether it is more programmer effort
to create Mondrix, or to port Linux to CCured. One issue with
CCured for operating systems is the requirement of wrappers for
libraries not compiled with a CCured compiler. Since proprietary
device drivers are often distributed in binary-only format, manu-
facturers would have to provide wrappers, or they could be reverse
engineered. CCured performance is variable, with slowdowns from
0–81%.

6.2 Hardware-based protection
Intel and AMD have announced support for the NX bit in the

page table[2], indicating their willingness to add hardware to make
software more reliable. Any attempt to execute an instruction from
a region with the NX bit set would cause a fault. Security-conscious
applications can set the NX bit on their stack, heap, and data sec-
tions, that would prevent some malicious attacks. However many
attacks overwrite data in jump tables and function pointers, and
these attacks will not be prevented by the NX bit.

The operating system for the Cambridge CAP computer [40],
and Multics [31] were written to run on hardware that supported
capabilities, which provided some of the isolation guarantees of
MMP. However, the structure of these systems is different from a
modern OS due to hardware imposed restrictions. For instance,
Multics limits the number of subsystems in a process to 8, and only
allows a subsystem to call another with a higher identifier.

MMP has been compared to segments [24] and capabilities [43].
It has the flexibility of segments, but with the simplicity and back-
wards compatibility of linear addressing. It provides some of the
most attractive features of capabilities, like fine-grained protection
domains and flexible resource sharing, while maintaining a back-
wards compatible programming model and providing simple rights
revocation. Hardware capabilities require a fundamentally incom-
patible change in the processor instruction set, complicate permis-
sion revocation [18, 6], and have trouble allowing domains to see
different permissions on a region of memory accessed via a shared
capability. Many of these problems have been addressed in recent
software-based capability systems [34, 35], but the incompatible
programming model problem remains a significant hurdle.

XOM [26, 25] is a hardware design and OS implementation of
an untrusted OS on trusted hardware. Its goals are different from
Mondrix (Mondrix empowers the developer while XOM empow-
ers content providers), but the hardware/OS co-design issues are a
close match.



6.3 OS structure
Single-address space operating systems place all processes in a

single, large address space [7, 17, 14], and many use protection
domains to specify memory permissions for different thread con-
texts [21]. The granularity of protection in these systems is a page
to match the underlying paging hardware. MMP’s finer granularity
allows the protection techniques of single address space OSes to be
applied to legacy operating systems.

The modularity of Mondrix resembles that found in many mi-
crokernel designs [1, 15], but without the performance problems
of protection domain switches being coupled with address space
switches.

Lightweight virtual machines like Xen [12] and Denali [39]
can get some benefits of fault containment by replicating entire
OS/application environments. But they do not address the detec-
tion of faults within an OS or application, they just provide an al-
ternative to a crash should such an error take place.

7. CONCLUSION
MMP provides a practical solution to the longstanding goal of

fine-grained memory protection. MMP provides fine-grained pro-
tection with backwards compatibility for operating systems, ISAs
and programming models, using only a small amount of additional
hardware that is not on the processor critical path. MMP avoids
additional confusing programmer-visible abstractions, yet can sup-
port most of the best ideas previously proposed for segmented or
capability systems.

Our experience in building Mondrix indicates that MMP’s pro-
gramming model fits naturally with how modern software is de-
signed and written. MMP provides hardware enforcement of exist-
ing module boundaries, improving software maintainability and ro-
bustness. Mondrix’s use of hardware memory protection increases
Linux’s robustness from software errors.

Modularity is a proven technique for providing flexible and sta-
ble systems, but current hardware and operating systems provide
only crude, and therefore neglected, support for modular software
systems. We believe fine-grained memory protection of the kind
provided by MMP should be a standard component of future com-
puting platforms.
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